Asymptotic behavior of a degenerate forest kinematic model with a perturbation - Archive ouverte HAL Accéder directement au contenu
Pré-Publication, Document De Travail Année : 2023

Asymptotic behavior of a degenerate forest kinematic model with a perturbation

Résumé

In this paper, we study the asymptotic behavior of the global solutions to a degenerate forest kinematic model, under the action of a perturbation modelling the impact of climate change. In the case where the main nonlinear term of the model is monotone, we prove that the global solutions converge to a stationary solution, by showing that the Lyapunov function deduced from the system satisfies a Łojasiewicz-Simon gradient inequality. We also present an original algorithm, based on the Statistical Model Checking framework, to estimate the probability of convergence towards non-constant equilibria. Furthermore, under suitable assumptions on the parameters, we prove the continuity of the flow and of the stationary solutions with respect to the perturbation parameter. Then, we succeed in proving the robustness of the weak attractors, by considering a weak topology phase space and establishing the existence of a family of positively invariant regions. At last, we present numerical simulations of the model and experiment the behavior of the solutions under the effect of several types of perturbations. We also show that the forest kinematic model can lead to the emergence of chaotic patterns.
Fichier principal
Vignette du fichier
Preprint_Asymptotic_behavior_of_the_degenerate_reaction_diffusion_systems_with_a_perturbation.pdf (4.84 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04480004 , version 1 (27-02-2024)
hal-04480004 , version 2 (17-06-2024)

Identifiants

  • HAL Id : hal-04480004 , version 2

Citer

Lu Li, Guillaume Cantin. Asymptotic behavior of a degenerate forest kinematic model with a perturbation. 2024. ⟨hal-04480004v2⟩
33 Consultations
21 Téléchargements

Partager

Gmail Mastodon Facebook X LinkedIn More