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Asymptotic behavior of a degenerate forest kinematic
model with a perturbation
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Abstract

In this paper, we study the asymptotic behavior of the global solutions to a degenerate forest kinematic
model, under the action of a perturbation modelling the impact of climate change. In the case where the
main nonlinear term of the model is monotone, we prove that the global solutions converge to a stationary
solution, by showing that the Lyapunov function deduced from the system satisfies a  Lojasiewicz-Simon
gradient inequality. We also present an original algorithm, based on the Statistical Model Checking
framework, to estimate the probability of convergence towards non-constant equilibria. Furthermore,
under suitable assumptions on the parameters, we prove the continuity of the flow and of the stationary
solutions with respect to the perturbation parameter. Then, we succeed in proving the robustness of the
weak attractors, by considering a weak topology phase space and establishing the existence of a family of
positively invariant regions. At last, we present numerical simulations of the model and experiment the
behavior of the solutions under the effect of several types of perturbations. We also show that the forest
kinematic model can lead to the emergence of chaotic patterns.
Key words. Forest kinematic model, perturbation, asymptotic behavior,  Lojasiewicz-Simon gradient
inequality, robustness, computational analysis.
AMS Subject Classification: 35K57, 35K65, 35B40, 35B41.

1 Introduction
Global Forest Resources Assessment 2020 (FRA 2020)1 declares that there are 4.06 billion hectares forests
around the world, cover nearly 1/3 of land globally. Forests, which are found around the globe, are the largest
terrestrial ecosystem of Earth by area, with tropical moist or dry forests around the Equator, temperate
forests at the middle latitudes, and boreal forests in subarctic climates. Most importantly, forests provide
a diversity of ecosystem services including biodiversity, carbon sequestration, purifying water, aiding in
regulating climate [19]. Meanwhile, anthropic activities and forest ecosystems interact with each other.
Anthropogenic factors that can affect forests include illegal or unsustainable logging, urban sprawl, human-
caused forest fires, acid rain, invasive species, etc [32]. There are also many natural factors that can cause
changes in forests over time, including forest fires, pollution, insect pests, diseases, competition between
species, as well as the impacts of climate change [22]. However, the impact of these accidental factors on
forest ecosystems can not be fully described by non-random forest dynamics. In the past decades, scientists
have continued to study global warming and its impact on Earth, and it is a great challenge for the scientific
community to better understand the dynamics of forest ecosystems under the impact of global warming. In
this paper, our aim is to study, through a mathematical modelling approach relying on differential equations,
the dynamics of forest ecosystems associated with several perturbations, which are caused by global warming
and anthropic activities.

In [20], an age-structured forest kinematic model determined by a system of parabolic-ordinary differential
equations was firstly investigated. The formation of the ecotone, which corresponds to the boundary between
the forest ecosystem and its neighbor ecosystem, was proved to be faithfully reproduced by the model.
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Afterwards, the dynamics of the age-structured forest model has been analyzed by several researchers in
a series of papers. The asymptotic behavior of the forest model was notably investigated in [21] (see also
Chapter 11 in [38] and the references cited therein). Recently, in [17], it was proved that the trajectories of the
model weakly converge to stationary solutions. In [6], an improvement of the model taking into account the
water resource was studied. In parallel, a simplified forest model, without any age-structure, was introduced
in [2] and [3], where a result of non-existence of the global attractor was established. Here, we consider a
forest kinematic model with a perturbation, which can be written as

∂u

∂t
= αw − q(u)− µp(u), ∂w

∂t
= δ∆w − βw + αu, (1)

where the unknown functions u, w denote the densities of trees and seeds, respectively, in a domain Ω ⊂ R2

modelling a geographical region occupied by a forest. As detailed below, u satisfies a nonlinear ordinary
differential equation involving a perturbation p(u) of a given nonlinearity q(u), and w satisfies a reaction-
diffusion equation. Very recently, the dynamics of the perturbed forest model (1) was investigated in [4] by
geometric methods, in a one dimensional domain, under restrictive symmetry assumptions. However, these
geometric methods cannot be extended to a two-dimensional domain, and the symmetry assumption was
central in the paper. Therefore, our aim is to continue the analysis of the perturbed forest model (1), by
overcoming the space dimension and symmetry restrictions considered in [4].

Main contributions. In the present paper, we consider a general perturbation of the nonlinearity q(u)
involved in the first equation of system (1) and study the asymptotic behavior of the degenerate forest kine-
matic model in 1D and 2D. We establish, without any symmetry assumption, a new result on the convergence
of the solutions towards stationary solutions and we prove non trivial statements on the robustness of the flow
and of the weak attractors, under the action of the perturbation parameter, in a functional context which is
characterized by a lack of compactness. We also improve the asymptotic analysis by applying a computational
procedure, based on an original algorithm inspired from the Statistical Model Checking framework [23], to
clarify the convergence result. We show that the perturbation succeeds in faithfully reproducing ecological
properties of great interest, as highlighted by our numerical results. We emphasize that the first challenge in
our research comes from the structure of ODE coupled with PDE, which explains the non-existence of the
global attractor of the system; the second challenge follows from the multiple parameters in the generalised
perturbation. However, our main results are only valid under a monotonicity assumption similar to that con-
sidered in [17]. For the non-monotone case, to the best of our knowledge, there is no such a rigorous result
(see [2, 10] for limited results on the unperturbed problem). Finally, we show with a numerical approach that
the perturbed forest model exhibits the formation of chaotic patterns, which are of great ecological interest.

We also emphasize that the age-structure forest model presented in [20] and the simplified forest model
introduced in [2] present remarkable similarities with degenerate reaction-diffusion systems arising in other
domains of life science. Indeed, models very similar to system (1) were studied in [1] or [26] for modelling the
dynamics of interacting species with one sedentary species, and in [18] or [25] for studying cellular dynamics
in microbiology. Therefore, the methods and results presented in our paper bring a novel knowledge for a
large class of systems arising in life science, and not only in forest ecology.

Our paper is organized as follows. In Section 2, we firstly present the forest kinematic model, its well-
posedness, and the Lyapunov function governing the dynamical system. We further characterize the ω-limit
sets of the global solutions, which consist of equilibria. In Section 3, under suitable convexity assumptions on
the parameters, we prove the asymptotic convergence result (Theorem 2) by applying the  Lojasiewicz-Simon
gradient inequality (Proposition 7). It is remarkable that the conclusion only holds when the potential of the
perturbation is convex. Besides, we present a computational analysis (Algorithm 1) of the asymptotic behav-
ior of the system to further clarify the convergence result. In Section 4, we study the long time behavior of the
forest model when the perturbation parameter µ tends to 0. We prove the continuity of the flow (Theorem
5), and in the monotone case, we can further prove the continuity of the stationary solutions (Theorem 6),
which is nontrivial, and yields the robustness of the weak attractors (Theorem 7). We also analyze the case
of a strong perturbation and show how it drives the system to converge to the trivial equilibrium. Finally,
in Section 5, we present several numerical simulations, which help better understand how the ecotone can be
shifted, and how intermediate ecosystems can emerge under different climatic perturbations. We also show
that randomly generated initial conditions can lead to chaotic patterns.
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2 Setting of the problem and preliminary results
In this paper, we consider the following initial boundary value problem:

∂u

∂t
= αw − qµ(u) in (0,+∞)× Ω,

∂w

∂t
= δ∆w − βw + αu in (0,+∞)× Ω,

∂w

∂ν
= 0 on (0,+∞)× Γ,

u(0, x) = u0(x), w(0, x) = w0(x) in Ω,

(2)

in a bounded and regular domain Ω ⊂ R2 with boundary Γ. The domain Ω models a geographical area
occupied by a forest. The unknown functions u = u(t, x) and w = w(t, x) respectively correspond to the
densities of the trees and the air-borne seeds. The biological coefficients α, β are the seed production and
seed deposition rates; δ is the diffusion rate of seeds in the air; qµ(u) denotes the mortality of the trees, which
is a smooth function associated with a perturbation term, given as

qµ(u) = q(u) + µp(u), q(u) = u[a(u− b)2 + c], µ ≥ 0, u ∈ R, (3)

where a, b, c are positive coefficients. We assume that the parameters α, β, δ and µ are positive (µ = 0 leads
to unperturbed situation of the system (2)). And the perturbation p(u) is continuously differentiable in R
and satisfies:

|p(s)|+ |p′(s)| ≤M1, ∀s ∈ R, M1 > 0. (4)

Note that the function qµ(u) derives from a potential Qµ(u) written as

Qµ(u) =
∫ u

0
(q(ξ) + µp(ξ))dξ, u ∈ R. (5)

In this paper, we prove a  Lojasiewicz-Simon gradient inequality under the assumption:

c− 1
3ab

2 + µp′(u) ≥ 0, (6)

which implies that the potential Qµ(u) given by (5) is convex. Equivalently, we have

Q′′
µ(u) = 1

3a(3u− 2b)2 + c− 1
3ab

2 + µp′(u) ≥ 0,

where q0 = min
u∈R

Q′′
µ(u) = c− 1

3ab
2 + µp′(u) ≥ 0.

Remark 1. (i) Assumption (6) implies that there exists a positive constant µ1 such that qµ(u) is monotone
on R for all 0 ≤ µ ≤ µ1.
(ii) Note that a special case of perturbation has been studied in [4] by geometric methods, given as

qµ(u) = q(u) + µp(u), q(u) = u(u2 − 1), µ ≥ 0, u ∈ R,

with symmetry assumption p(s) + p(−s) = 0, but the conclusions are only valid in 1D. In this paper, we
consider a generalised perturbation (3) with monotone restriction (6), and study the asymptotic behavior of
the perturbed problem (2) in 1D and 2D.

Throughout this paper, C will stand for positive constants, which may depend on Ω and some other
parameters, but are independent of the choice of t, and may change from line to line. Let C

(
I,X) (respectively

C1(I,X)) denote the space of continuous (respectively continuously differentiable) functions defined on an
interval I ⊂ R with values in a Banach space X. Let Lp(Ω) and W k,p(Ω), p ∈ [1,∞], k ∈ N be the general
Lebesgue and Sobolev spaces, equipped with the norms ∥ · ∥Lp and ∥ · ∥W k,p , respectively. In particular, for
p = 2, we simply note W k,2(Ω) = Hk(Ω). If V is a Hilbert space with dual V ′, its inner product is denoted
(u, v), u, v ∈ V , and the duality product in V × V ′ is denoted < u, v >, u ∈ V , v ∈ V ′.
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2.1 Well-posedness of the forest model
Following [38], we handle the degenerate forest kinetic system (2) in the Banach space X defined by

X = L∞(Ω)× L2(Ω),

equipped with the product norm ∥U∥X = ∥u∥L∞ + ∥w∥L2 , for U = (u,w)⊤ ∈ X. We will also consider the
product space L2(Ω) = L2(Ω)× L2(Ω). The space of initial values is given by

K =
{
U = (u,w)⊤ ∈ X | u,w ≥ 0

}
.

We consider the differential operator Λ defined as the realization of −δ∆ + β in L2(Ω) with the Neumann
boundary condition on Γ. It is known that Λ is a positive definite self-adjoint and sectorial operator, of angle
strictly less than π

2 , with domain

D(Λ) = H2
N (Ω) =

{
w ∈ H2(Ω) | ∂w

∂ν
= 0 on Γ

}
.

Hence, the diagonal operator A = diag {1,Λ} is also a sectorial operator in X, with angle strictly less than π
2 ,

and with domain D(A) = L∞(Ω)×D(Λ). Next, we consider an exponent η ∈
( 3

4 , 1
)
. The sectorial operator

Λ admits a fractional power Λη whose domain is given by

D(Λη) = H2η
N (Ω) =

{
w ∈ H2η(Ω) | ∂w

∂ν
= 0 on Γ

}
,

where H2η(Ω) is the interpolation space W 2η,2(Ω). We have the continuous embeddings

H2η(Ω) ⊂ C
(
Ω̄
)
⊂ L∞(Ω) ⊂ L2(Ω). (7)

Note that the norms ∥u∥D(Λη) and ∥Ληu∥L2(Ω) are equivalent. The diagonal operator A also admits a
fractional power Aη and its domain is given by D(Aη) = L∞(Ω)×H2η

N (Ω).
In this way, the degenerate forest kinematic system (2) can be written in an abstract form

dU

dt
+AU = Fµ(U), t > 0,

U(0) = U0,
(8)

where Fµ(U) is the nonlinear operator defined by

Fµ(U) =
(
αw − qµ(u) + u

αu

)
, U = (u,w)⊤ ∈ D(Aη).

Note that the domain of the nonlinear operator Fµ is uniform with respect to the perturbation parameter µ.
Based on the same techniques applied in Chapter 11 of [38], the dissipative estimate and the existence of

global solution of the problem (8) can be established. Here, we omit the proof.
Theorem 1 (Global solutions and continuous dynamical system). Let µ ≥ 0. For all U0 ∈ K, the Cauchy
problem defined by (8) admits a unique global solution Uµ(t, U0) = (uµ, wµ)⊤ defined on [0,+∞) in the
function space

uµ ∈ C
(
[0,+∞), L∞(Ω)

)
∩ C1((0,+∞), L∞(Ω)

)
,

wµ ∈ C
(
(0,+∞), H2

N (Ω)
)
∩ C
(
[0,+∞), L2(Ω)

)
∩ C1((0,+∞), L2(Ω)

)
.

Furthermore, the degenerate forest kinematic system (2) determines a continuous dynamical system Sµ(t)
defined in X by

Sµ(t)U0 = Uµ(t, U0), t ≥ 0. (9)
Remark 2. Following [4], we emphasize that the domain of A is not compactly embedded in X, although
the domain of Λ is compactly embedded in L2(Ω). This is due to the absence of diffusion term in the first
equation, and partly determines the non-existence of a global attractor (see [2]). However, we can not show
that the absorbing set Bµ generated by the dynamical system Sµ(t) is compact, hence it turns out that the study
of the asymptotic behavior of the dynamical system can not be described by means of the global attractor. In
Section 3, we will bypass this lack of compactness by showing the existence of a family of positively invariant
regions.
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2.2 Lyapunov function
It is obvious that the potential Qµ(u) defined by (5) satisfies Qµ(u) − αuw ≥ −C, for all u,w ≥ 0, with
C > 0. Therefore, we can prove that the dynamical system (Sµ(t),K, X) determined by (9) admits a
Lyapunov function given by

Lµ(u,w) =
∫

Ω

[
δ

2 |∇w|
2 + β

2w
2dx− αuw +Qµ(u)

]
dx. (10)

The behavior of the forest model (2) is also governed by the potential Hµ(u,w) defined by

Hµ(u,w) = β

2w
2 − αuw +Qµ(u), u, w ∈ R.

Note that the convexity of Qµ(u) does not imply that Hµ(u,w) is convex. Besides, a symmetric potential
H(u,w) has been studied in [2, 4], but only under symmetry assumptions. Since we consider a generalised
perturbation qµ(u) in this paper, we can not take advantage of the symmetric properties of Hµ(u,w) to study
the asymptotic behavior of the model (2).

Furthermore, the Lyapunov function provides the following additional estimates of time derivative of the
global solutions (see Propositions 11.4 and 11.5 in [38]).

Proposition 1. For any trajectory Sµ(t)U0 = Uµ(t) of the forest kinematic model (2), U0 ∈ K, the time
derivative of the global solution is bounded in L2((1,∞),L2), that is∫ ∞

1

∥∥∥∥dUµ

dt
(t)
∥∥∥∥2

L2
<∞.

Proposition 2. For any trajectory Sµ(t)U0 = Uµ(t) of the forest kinematic model (2), U0 ∈ K, the time
derivative of the global solution dUµ

dt (t) converges to 0 as t→∞ in the L2 norm.

Remark 3. The convergence of global solutions can be obtained as long as we have dUµ

dt (t) ∈ L1((1,∞),L2).
However, it can not be directly deduced from the above two propositions. To overcome this difficulty, we prove
additional properties of the Lyapunov function and the global solutions, and we also prove the  Lojasiewicz-
Simon gradient inequality. Then, the addititonal estimation of the time derivative of the global solution can
be deduced, so that we can further prove the asymptotic convergence result in Section 3.

2.3 Constant and non-constant stationary solutions
The forest kinematic model (2) admits constant and non-constant stationary solutions. The constant sta-
tionary solutions satisfy {

αw − qµ(u) = 0,
−βw + αu = 0.

(11)

The solutions of the above system correspond to the intersection points between the function qµ(u) and the
line α2

β u. For µ = 0, system (11) admits three homogeneous stationary solutions, which are denoted by
O = (0, 0)⊤, U− = (u−, w−)⊤ and U+ = (u+, w+)⊤ (with 0 < u− < u+).

It follows from the approach in [21] that the constant stationary solutions O = (0, 0)⊤, U+ = (u+, w+)⊤

are stable, and the constant stationary solution U− = (u−, w−)⊤ is unstable. For µ > µ1 (where µ1 is given
in Remark 1), the number of constant stationary solutions can be greater than 3. In the sequel, we denote
by

U+
µ = (u+

µ , w
+
µ )⊤ (12)

the greatest constant stationary solution of the perturbed system (11). Moreover, we assume that there exists
a positive constant µ2 > µ1 > 0, such that, for µ > µ2, the trivial solution O is the only constant stationary
solution.
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Next, the non-constant stationary solutions are determined by the elliptic problem
αw̄ − qµ(ū) = 0 in Ω,
δ∆w̄ − βw̄ + αū = 0 in Ω,
∂w̄

∂v
= 0 on Γ.

(13)

We will prove that the non-constant stationary solutions describe the asymptotic behavior of the forest
kinematic model (2). Indeed, based on the theories in Section 4.2 of Chapter 11 in [38], for each U0 ∈ K, we
can introduce a modified L2-ω-limit set of the global solution Uµ(t) by setting

L2-ωµ(U0) =
{
Ūµ ∈ X;∃tn ↗∞ such that ∥Uµ(tn)− Ūµ∥L2 → 0

}
. (14)

Then, adapting the proof of Theorems 11.4 and 11.5 in [38], the following proposition can be established.

Proposition 3. Let (6) hold, and let U0 ∈ K. Then, the L2-ω-limit set L2-ωµ(U0) is nonempty. Furthermore,
the set consists of equilibria of (2), i.e., Ūµ = (ū, w̄)⊤ satisfies (13).

Our aim in Section 3 is to prove that the global solutions Uµ(t) = Sµ(t)U0 converge towards the hetero-
geneous stationary solution Ūµ by applying the  Lojasiewicz-Simon gradient inequality (see [17, 24]).

3 Convergence towards stationary solutions
In this section, we establish our main convergence result. In order to simplify the notations, we use Uµ(t) =
(u,w)⊤ instead of Uµ(t) = (uµ, wµ)⊤ to denote the global solution to (2) with the initial value U0 ∈ K, and
we fix (ū, w̄)⊤ = Ūµ ∈ L2-ω(U0). It follows from Theorem 1 that

∥u(t)∥L∞ + ∥w(t)∥H2 ≤ R, 1 ≤ t <∞, (15)

where R > 0 depends only on ∥U0∥X . Then, we have the following propositions.

Proposition 4. Let (15) be satisfied, and Ū = (ū, w̄)⊤ ∈ L2-ω(U0). Then, ∥ū∥L∞ ≤ R holds. Moreover,
w̄ ∈ H2

N (Ω) and ∥w̄∥H2 ≤ R hold.

Proof. ∥ū∥L∞ ≤ R follows as a result of the weak*-compactness of the closed unit ball in L∞(Ω). We next
prove that w̄ is bounded in H2

N (Ω). By definition of the L2-ω-limit set, there exists a sequence tn ↗∞ such
that w(tn)→ w̄ in L2(Ω). Since H2

N (Ω) is sequentially weakly compact and w(tn) is a bounded sequence in
H2

N (Ω), there exists a subsequence w(t′n) such that w(t′n) has a weak limit w̃ in H2
N (Ω). Thus, w(t′n)→ w̃ in

L2(Ω), so w̃ = w̄ ∈ H2
N (Ω). We further have ∥w̄∥H2 ≤ lim inf

t′
n→∞

∥w(t′n)∥H2 ≤ R, which completes the proof.

Proposition 5. Let (15) be satisfied, and Ūµ = (ū, w̄)⊤ ∈ L2-ω(U0). Then, there exists a time sequence
tn ↗∞ such that Uµ(tn)→ Ūµ in L2(Ω)×H1

N (Ω).

Proof. It directly follows from the definition of L2-ω-limit set that there exists a sequence tn ↗∞ such that
Uµ(tn)→ Ūµ in L2. Moreover, the estimate (15) yields that ∥w(t) + w̄∥H2 ≤ 2R for all t ≥ 1, we thus apply
the interpolation inequality to have ∥w(tn)−w̄∥H1 ≤ ∥w(tn)−w̄∥

1
2
H2∥w(tn)−w̄∥

1
2
L2 ≤

√
2R∥w(tn)−w̄∥

1
2
L2 → 0

as tn →∞.

We then set V = L2(Ω)×H1
N (Ω) in the rest of the paper.

3.1 Modification of the Lyapunov function
In order to consider the Lyapunov function given by (10) on the space V , we need to modify the potential
Qµ(u) such that Qµ(u) = O(u2) when |u| ≫ 1, where O(·) is big O notation, without changing the value Lµ

on the global solution Uµ(t) and Ūµ.
Therefore, we introduce the function Q̃µ : R→ R admitting the following properties:

(i) Q̃µ(u) = Qµ(u) for u ∈ (−1, R+ 1);
(ii) Q̃µ(u) = O(u2) for u ∈ (−∞,−1] ∪ [R+ 1,∞);
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(iii) Q̃µ ∈ C2(R) and the second derivative satisfies

0 < q0 ≤ Q̃′′
µ(u) ≤ q1 for any u ∈ R, (16)

with some constant q1 > 0 (recall that q0 = c− 1
3ab

2 + µp′(u), as defined in (6)).
Based on the modified function Q̃µ, we obtain the modified Lyapunov function L̃µ : V → R, written as

L̃µ(u,w) =
∫

Ω

[
δ

2 |∇w|
2 + β

2w
2 − αuw + Q̃µ(u)

]
dx for Uµ = (u,w)⊤ ∈ V. (17)

Since Q̃µ(u) = Qµ(u) for 0 ≤ u ≤ R, we have that L̃µ(Uµ(t)) = Lµ(Uµ(t)) along the global solution, which
implies that L̃µ(·) plays the same role of a Lyapunov function as Lµ(·). Furthermore, the proposition 4
ensures that L̃µ(Ūµ) = Lµ(Ūµ).

Then, we can prove the above modified Lyapunov function L̃µ : V → R is Fréchet differentiable, and
its first Fréchet derivative is denoted as L̃ ′

µ : V → V ′, V ′ = L2(Ω) × H−1(Ω). Furthermore, we regard
Λ = −δ∆ + β as an isomorphism from H1

N (Ω) onto H−1(Ω).

Proposition 6. The function L̃µ : V → R is Fréchet differentiable with its derivative

L̃ ′
µ(Uµ) =

(
−αw + qµ(u)

Λw − αu

)
∈ V ′ for Uµ = (u,w)⊤ ∈ V. (18)

In particular, we have L̃ ′
µ(Ūµ) = 0 for Ūµ ∈ L2-ω(U0).

Proof. For Uµ = (u,w)⊤, Ũµ = (ũ, w̃)⊤ ∈ V , we have

L̃µ(Uµ + Ũµ)− L̃µ(Uµ)−
〈(
−αw + qµ(u)

Λw − αu

)
,

(
ũ
w̃

)〉
V ′×V

=
∫

Ω
[−αũw̃ + Q̃µ(u+ ũ)− Q̃µ(u)− Q̃′

µ(u)ũ]dx+ 1
2 ⟨Λw̃, w̃⟩H−1×H1 .

Due to (16), we have ∣∣∣∣∫
Ω

[Q̃µ(u+ ũ)− Q̃µ(u)− Q̃′
µ(u)ũ]dx

∣∣∣∣ ≤ q1

2 ∥ũ∥
2
L2 ,

thus, ∣∣∣L̃µ(Uµ + Ũµ)− L̃µ(Uµ)−
〈
L̃ ′

µ(Uµ), Ũµ

〉
V ′×V

∣∣∣ ≤ CLµ
∥Ũµ∥2

V , (19)

where CLµ is positive. The Fréchet derivative (18) is obtained.
Recall that Ūµ ∈ L2-ω(U0) is a solution of (13). Moreover, since 0 ≤ ū ≤ R for a.e. x ∈ Ω, we know that

Q̃′
µ(ū(x)) = Q′

µ(ū(x)) = qµ(ū). It is obviously to deduce that L̃ ′
µ(Ūµ) = 0.

We note that L̃ ′
µ : V → V ′ is not Fréchet differentiable. Whereas, due to (16), it is easily derived that

L̃ ′
µ is Lipschitz continuous, i.e., there exists a constant L0 > 0 such that∥∥L̃ ′

µ(Uµ)− L̃ ′
µ(Ũµ)

∥∥
V ′ ≤ L0∥Uµ − Ũµ∥V for Uµ, Ũµ ∈ V. (20)

3.2  Lojasiewicz-Simon gradient inequality
We then prove that the modified Lyapunov function L̃µ(Uµ) give by (17) satisfies the  Lojasiewicz-Simon
gradient inequality with the following form.

Proposition 7. Set θ ∈ (0, 1
2 ). There exists r > 0 and ϵ > 0 such that∣∣L̃µ(Uµ)− L̃µ(Ūµ)

∣∣ ≤ ϵ∥∥L̃ ′
µ(Uµ)

∥∥ 1
1−θ

V ′ if ∥Uµ − Ūµ∥V < r. (21)
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Proof. We divide the proof of the above  Lojasiewicz-Simon gradient inequality into three steps.
Step 1. Note that Λ−1 : L2(Ω) → L2(Ω) is a compact self-adjoint operator. Considering the eigenvalue
problem

Λ−1en = ηnen in L2(Ω).
As a result of the theory of compact self-adjoint operators, there exists a Hilbert basis {en}n∈N(⊂ H2

N (Ω))
of L2(Ω) and positive eigenvalues {ηn}n∈N such that ηn ↘ 0 as n → +∞. For each N ∈ N, considering
orthogonal projection PN from L2(Ω) onto span {e1, · · · , eN}, then we have the following estimation

∥w∥2
L2(Ω) ≤ ∥PNw∥2

L2(Ω) + ηN+1 ⟨Λw,w⟩H−1×H1 for w ∈ H1
N (Ω).

Therefore, for Uµ = (u,w)⊤ ∈ V , the mapping F : V → V ′ is defined as

F (Uµ) = L̃ ′
µ(Uµ) +

(
0

λPNw

)
=
(
−αw + Q̃′

µ(u)
Λw − αu+ λPNw

)
, (22)

which is a coercive monotone operator if N ∈ N and λ > 0 are sufficiently large. In other words, the following
proposition is confirmed.

Proposition 8. For sufficiently large N ∈ N and λ > 0, there exists a constant L1 > 0 such that
1
L1
∥Uµ − Ũµ∥2

V ≤
〈
F (Uµ)−F (Ũµ), Uµ − Ũµ

〉
V ′×V

for Uµ, Ũµ ∈ V. (23)

Proof. We firstly calculate that〈
L̃ ′

µ(Uµ)− L̃ ′
µ(Ũµ), Uµ − Ũµ

〉
V ′×V

=− 2α
∫

Ω
(u− ũ)(w − w̃)dx+

∫
Ω

[Q̃′
µ(u)− Q̃′

µ(ũ)](u− ũ)dx+ ⟨Λ(w − w̃), w − w̃⟩H−1×H1 .

Due to Q̃′
µ(ξ)− Q̃′

µ(ξ̃) =
∫ 1

0 Q̃
′′
µ(θξ + (1− θ)ξ̃)dθ × (ξ − ξ̃) for ξ, ξ̃ ∈ R, applying (16) again, we have∫

Ω
[Q̃′

µ(u)− Q̃′
µ(ũ)](u− ũ)dx ≥ q0∥u− ũ∥2

L2 ,

and
−2α

∫
Ω

(u− ũ)(w − w̃)dx ≥ − q0
2 ∥u− ũ∥

2
L2 − 2α2

q0
∥w − w̃∥2

L2

by employing the Young’s inequality. Thus, it follows that〈
L̃ ′

µ(Uµ)− L̃ ′
µ(Ũµ), Uµ − Ũµ

〉
V ′×V

≥ q0
2 ∥u− ũ∥

2
L2 − 2α2

q0
∥w − w̃∥2

L2 + ⟨Λ(w − w̃), w − w̃⟩H−1×H ,

so we have〈
F (Uµ)−F (Ũµ), Uµ − Ũµ

〉
V ′×V

≥ q0
2 ∥u−ũ∥

2
L2 +(λ− 2α2

q0
)∥w−w̃∥2

L2 +(1−ληN+1) ⟨Λ(w − w̃), w − w̃⟩H−1×H ,

we finish the proof by choosing λ > 2α2

q0
and taking N ∈ N large enough (so that ηN+1 is sufficiently

small).

It follows from Proposition 8 that F : V → V ′ is injective. Furthermore, it is derived by the Browder-
Minty theorem (see [34], Theorem 10.49) that F is surjective. As for its inverse F −1 : V ′ → V , which is
deduced by (23) that ∥∥F −1(U∗

µ)−F −1(Ũ∗
µ)
∥∥

V
≤ L1∥U∗

µ − Ũ∗
µ∥V ′ for U∗

µ, Ũ
∗
µ ∈ V ′. (24)

Step 2. As a restriction of F , consider the mapping F̃ : D → X, written as

F̃ (Uµ) =
(
−αw + Q̃′

µ(u)
Λw − αu+ λPNw

)
∈ X for Uµ = (u,w)⊤ ∈ D. (25)

Then, we obtain the following proposition. Note that the orthogonal projection PN on L2(Ω) is regarded as
a bounded linear operator from H2

N (Ω) to L2(Ω).
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Proposition 9. F̃ : U(Ūµ) ⊂ D → X is an analytic function, where U(Ūµ) is a neighborhood of Ūµ in D.

Proof. It is easy to prove that mapping Q̃′
µ : L∞(Ω) → L∞(Ω) is analytic at ū ∈ L∞(Ω). In fact, if Q̃′

µ is
analytic at ū ∈ L∞(Ω), a neighborhood of ū exists such that Q̃′

µ is analytic on its neighborhood. We omit
the proof here.

In particular, for Uµ = (u,w)⊤ ∈ U(Ūµ), its first derivative F̃ ′ : U(Ūµ)→ L(D, X) is given by

F̃ ′(Uµ) =
(
Q̃′′

µ(u) −α
−α Λ + λPN

)
∈ L(D, X),

where the inverse mapping theorem theorem (see [39], Corollary 4.37) is applied. We further have the
following proposition.

Proposition 10. F̃ ′(Ūµ) : D → X is bijective.

Proof. Note that the operator T , given by

T =
(
Q̃′′

µ(u) −α
−α Λ + λPN

)
,

belongs to L(V, V ′). By using the same approach in the proof of Proposition 8, 1
L1
∥Uµ∥2

V ≤ ⟨TUµ, Uµ⟩V ′×V
for Uµ ∈ V is obtained. Thus,

T is a linear isomorphism from V onto V ′. (26)

Let U∗
µ = (u∗, w∗)⊤ ∈ X. Since also (u∗, w∗)⊤ ∈ V ′, it follows from (26) that there exists a unique

Uµ = (u,w)⊤ ∈ V such that

T

(
u
w

)
=
(

uQ̃′′
µ(u)− αw

−αu+ Λw + λPNw

)
=
(
u∗

w∗

)
It is obviously that Λw = w∗ + αu− λPNw ∈ L2(Ω), and u = 1

Q̃′′
µ(u) (u∗ + αw) ∈ L∞(Ω) by employing (16).

Therefore, F̃ ′(Ūµ) is bijective from D to X.

Due to Proposition 9, Proposition 10 and [39] Corollary 4.37, there exists a neighborhood V(F̃ (Ūµ)) ⊂ X,
such that

F̃ : U(Ūµ)→ V(F̃ (Ūµ)) is an analytic diffeomorphism (27)

by choosing sufficiently small U(Ūµ).
Step 3. Considering the finite-dimensional linear space

EN = 0× span{e1, · · · , eN} ⊂ D,

equipped with the norm ∥ · ∥EN
, we then have the norm equivalence∥∥(0, wN )⊤∥∥

EN
= ∥wN∥H1 for (0, wN )⊤ ∈ EN . (28)

Therefore, we have the following proposition.

Proposition 11. There exist constants ϵ0 > 0 and r0 > 0 such that∣∣L̃µ ◦ F̃ −1((0, λPNw)⊤)− L̃µ(Ūµ)
∣∣1−θ ≤ ϵ0

∥∥(L̃µ ◦ F̃ −1)′((0, λPNw)⊤)
∥∥

E′
N

for ∥w − w̄∥H1 < r0. (29)

Proof. It is obvious that L̃µ is analytic as a function from U(Ūµ) ⊂ D to R. Combined with (27), we have
the function composition:

L̃µ ◦ F̃ −1 : V(F̃ (Ūµ)) ∩ EN → R is an analytic function from EN to R. (30)
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Then, employing the classical  Lojasiewicz Theorem (see [24]) to assume that θ ∈ (0, 1
2 ] and ϵ0, r1 > 0 exist,

such that∣∣L̃µ ◦ F̃ −1((0, wN )⊤)− L̃µ ◦ F̃ −1(F̃ (Ūµ))
∣∣1−θ ≤ ϵ0

∥∥(L̃µ ◦ F̃ −1)′((0, wN )⊤)− (L̃µ ◦ F̃ −1)′(F̃ (Ūµ))
∥∥

E′
N

,

if (0, wN )⊤ ∈ EN satisfies ∥(0, wN − λPN w̄)⊤∥EN
< r1. Note that, it follows from L̃ ′

µ(Ūµ) = 0 that
(L̃µ ◦ F̃ −1)′(F̃ (Ūµ)) = L̃ ′

µ(F̃ −1(F̃ (Ūµ)))◦ (F̃ −1)′(F̃ (Ūµ)) = L̃ ′
µ(Ūµ)◦ (F̃ −1)′(F̃ (Ūµ)) = 0. Then we have∣∣L̃µ ◦ F̃ −1((0, wN )⊤)− L̃µ(Ūµ)

∣∣1−θ ≤ ϵ0
∥∥(L̃µ ◦ F̃ −1)′((0, wN )⊤)

∥∥
E′

N

if ∥(0, wN − λPN w̄)⊤∥EN
< r1.

(31)
Due to (28), there exists r0 > 0 small enough so that ∥w − w̄∥H1 < r0 and ∥(0, wN − λPN w̄)⊤∥EN

< r1.
Therefore, (29) can be deduced by (31), we finish the proof of Proposition 11.

Furthermore, we estimate the right side of (29) to have∥∥(L̃µ ◦ F̃ −1)′((0, λPNw)⊤)
∥∥

E′
N

=
∥∥L̃ ′

µ(F̃ −1((0, λPNw)⊤)) ◦ (F̃ −1)′((0, λPNw)⊤)
∥∥

E′
N

≤ Cr

∥∥L̃ ′
µ(F̃ −1((0, λPNw)⊤))

∥∥
V ′ ,

where the constant Cr is positive and depends only on r0, we note that it follows from (27) that∥∥(F̃ −1)′((0, λPNw)⊤)
∥∥

L(EN ,V ) ≤ Cr if ∥w − w̄∥H1 < r0.

For arbitrarily u ∈ L2(Ω), we have∥∥L̃ ′
µ(F̃ −1((0, λPNw)⊤))

∥∥
V ′ ≤

∥∥L̃ ′
µ(F̃ −1((0, λPNw)⊤))− L̃ ′

µ((u,w)⊤)
∥∥

V ′ +
∥∥L̃ ′

µ((u,w)⊤)
∥∥

V ′

≤ L0
∥∥F̃ −1((0, λPNw)⊤)− F̃ −1(F̃ ((u,w)⊤))

∥∥
V

+
∥∥L̃ ′

µ(Uµ)
∥∥

V ′

≤ (L0L1 + 1)
∥∥L̃ ′

µ(Uµ)
∥∥

V ′

by employing (20), (22) and (24). Then, for Uµ = (u,w)⊤ ∈ V, ∥w − w̄∥H1 < r0, it follows that∣∣L̃µ ◦ F̃ −1((0, λPNw)⊤)− L̃µ(Ūµ)
∣∣1−θ ≤ ϵ0Cr(L0L1 + 1)

∥∥L̃ ′
µ(Uµ)

∥∥
V ′ . (32)

Besides, note that Ũµ = F̃ −1((0, λPNw)⊤)− Uµ, it follows from (19) that∣∣L̃µ(Uµ)− L̃µ ◦ F̃ −1((0, λPNw)⊤)
∣∣

=
∣∣L̃µ(Uµ)− L̃µ(Uµ + Ũµ)

∣∣
≤
∥∥L̃ ′

µ(Uµ)
∥∥

V ′

∥∥F̃ −1((0, λPNw)⊤)− Uµ

∥∥
V

+ CLµ

∥∥F̃ −1((0, λPNw)⊤)− Uµ

∥∥2
V

≤(L1 + CLµ
L2

1)
∥∥L̃ ′

µ(Uµ)
∥∥2

V ′ , (33)

again, (22) and (24) are applied. Therefore, it is derived from (32) and (33) that∣∣L̃µ(Uµ)− L̃µ(Ūµ)
∣∣ ≤ ϵ0Cr(L0L1 + 1)

∥∥L̃ ′
µ(Uµ)

∥∥ 1
1−θ

V ′ + (L1 + CLµ
L2

1)
∥∥L̃ ′

µ(Uµ)
∥∥2

V ′

≤ C0
∥∥L̃ ′

µ(Uµ)
∥∥ 1

1−θ

V ′ if ∥Uµ − Ūµ∥V < r,

where the constant C0 is positive and depends on ϵ0, CLµ , Cr, L0, L1 and θ, by taking r ∈ (0, r0) small enough
to make sure that

∥∥L̃ ′
µ(Uµ)

∥∥2
V ′ ≤

∥∥L̃ ′
µ(Uµ)

∥∥ 1
1−θ

V ′ . We eventually finish the proof of Proposition 7.

Remark 4. Note that the convexity condition (6) is a restrictive one, otherwise (especially, when the per-
turbation µ is large), the approach we apply in this section can not ensure the  Lojasiewicz-Simon gradient
inequality still holds. Therefore, we can not further prove the following asymptotic convergence result.
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3.3 Asymptotic convergence result
To prove the asymptotic convergence of global solutions, we firstly present the following lemma (see Appendix
in [17] and Lemma 7.1 in [12] for the proof), which gives a sufficient condition in order that a function in
L2(0,∞) is also in L1(0,∞).

Lemma 1. Let F : (0,∞)→ [0,∞) be a nonnegative continuous function satisfying F ∈ L2(0,∞). Assume
that an interval I = (T, T ′) ⊂ (0,∞), an exponent α ∈ (1, 2), and a constant κ > 0 exist such that(∫ ∞

t

F (τ)2dτ

)α

≤ κF (t)2, ∀t ∈ I. (34)

Then, the following inequality holds: ∫
I

F (τ)dτ ≤ κ′∥F∥α′

L2(T,∞), (35)

where α′ > 0 depends only on α, and κ′ > 0 depends only on α and κ.

Then, we have the following proposition.

Proposition 12. For sufficiently large time T > 0, There exists a constant κ > 0. If ∥Uµ(t) − Ūµ∥V < r,
t > T , then (∫ ∞

t

∥∥∥∥dUµ

dτ
(τ)
∥∥∥∥2

L2
dτ

)2(1−θ)

≤ κ
∥∥∥∥dUµ

dt
(t)
∥∥∥∥2

L2
. (36)

Proof. Since we have
∥∥∥dUµ

dt (t)
∥∥∥
L2
→ 0 as t→∞ due to Proposition 2, take T > 1 large enough such that∥∥∥∥∂u∂t (t)

∥∥∥∥
L2
< 1, ∀t > T,

and we fix such time T > 1. Due to the definition of L2-ω(U0), there exists a t ∈ (T,∞) such that
∥Uµ(t)− Ūµ∥V < r.

Next, we have

−
∫

Ω

(∣∣∣∣∂u∂t
∣∣∣∣2 +

∣∣∣∣∂w∂t
∣∣∣∣2
)
dx = d

dt

∫
Ω

[
δ

2 |∇w|
2dx+ β

2w
2dx− αuw +Qµ(u)

]
dx.

By integrating the above equation with respect to time on (t,∞), we have∫ ∞

t

∫
Ω

(∣∣∣∣∂u∂τ (τ)
∣∣∣∣2 +

∣∣∣∣∂u∂τ (τ)
∣∣∣∣2
)
dxdτ = L̃µ(Uµ(t))− L̃µ(Ūµ),

it is deduced from (21) that∫ ∞

t

(∥∥∥∥∂u∂τ (τ)
∥∥∥∥2

L2
+
∥∥∥∥∂w∂τ (τ)

∥∥∥∥2

L2

)
dτ ≤ ϵ∥L̃ ′

µ(Uµ(t))∥
1

1−θ

V ′ . (37)

Then, it follows from Proposition 6 that L̃ ′
µ(Uµ(t)) = (−∂u

∂t ,−
∂w
∂t )⊤ ∈ V ′, which yields

∥L̃ ′
µ(Uµ(t))∥2

V ′ ≤ C

(∥∥∥∥∂u∂t (t)
∥∥∥∥2

L2
+
∥∥∥∥∂w∂t (t)

∥∥∥∥2

H−1

)
.

Combined with (37), we have ∫ ∞

t

∥∥∥∥dUµ

dτ
(τ)
∥∥∥∥2

L2
dτ ≤ C ′

∥∥∥∥dUµ

dt
(t)
∥∥∥∥ 1

1−θ

L2
,

where, C ′ depends on positive constants ϵ and θ ∈ (0, 1
2 ). We finish the proof.
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Furthermore, we prove the following lemma.

Lemma 2. There exists a sufficiently large tN > 0 such that ∥Uµ(t)− Ūµ∥V < r for all t ≥ tN .

Proof. Owing to Proposition 5, there exists a time sequence tn ↗ ∞ such that Uµ(tn) → Ūµ in V . Thus, a
sufficiently large N0 exists to ensure that

∥Uµ(tn)− Ūµ∥V ≤
r

3 , ∀n ≥ N0.

Moreover, for n ≥ N0, set t′n = inf{t ∈ (tn,∞); ∥Uµ(t) − Ūµ∥V = r}; in particular, t′n = ∞ when ∥Uµ(t) −
Ūµ∥V < r for all t ≥ tn. Recalling Lemma 1, we take F (t) =

∥∥∥dUµ

dt (t)
∥∥∥
L2

, α = 2(1− θ), T = tn, and T ′ = t′n.
Then, due to Proposition 12, we have

∫ t′
n

tn

∥∥∥∥dUµ

dτ
(τ)
∥∥∥∥
L2
dτ < κ′

(∫ ∞

tn

∥∥∥∥dUµ

dt
(t)
∥∥∥∥2

L2
dt

) θ′
2

,

where θ′ depends only on θ. Therefore,

∥Uµ(t′n)− Uµ(tn)∥V ≤ C
∫ t′

n

tn

∥∥∥∥dUµ

dτ
(τ)
∥∥∥∥
L2
dτ ≤ Cκ′

(∫ ∞

tn

∥∥∥∥dUµ

dt
(t)
∥∥∥∥2

L2
dt

) θ′
2

.

Then, ∥Uµ(t′N ) − Uµ(tN )∥V ≤ r
3 can be derived by taking N ≥ N0 large enough. Besides, we know that

t′N =∞, for such N ≥ N0. Indeed, suppose that t′N <∞. Then, ∥Uµ(t′N )− Ūµ∥V = r. On the other hand,
we have

∥Uµ(t′N )− Ūµ∥V ≤ ∥Uµ(t′N )− Uµ(tN )∥V + ∥Uµ(tN )− Ūµ∥V ≤
2r
3 ,

which completes the proof.

Finally, we conclude the asymptotic convergence result.

Theorem 2. Assume that assumption (6) holds. Let Uµ(t) = Sµ(t)U0 be the global solution to the forest
kinematic model (2) with initial value U0 ∈ K, and let Ūµ ∈ L2-ω(U0) be a stationary solution to (2). Then,
we have Uµ(t)→ Ūµ in L2(Ω) as t→∞.

Proof. Due to Lemma 1, 2 and Proposition 12, there exists a sufficiently large tN > 0 such that

∫ ∞

t

∥∥∥∥dUµ

dτ
(τ)
∥∥∥∥
L2
dτ ≤ κ′

(∫ ∞

t

∥∥∥∥dUµ

dτ
(τ)
∥∥∥∥2

L2
dτ

) θ′
2

, ∀t ≥ tN .

Furthermore, since the definition of L2-ω(U0), there exists a time sequence tn ↗∞ such that Uµ(tn)→ Ūµ

in L2(Ω). Then, we have

∥Uµ(t)− Ūµ∥L2 ≤ ∥Uµ(t)− Uµ(tn)∥L2 + ∥Uµ(tn)− Ūµ∥L2

≤
∫ tn

t

∥∥∥∥dUµ

dτ
(τ)
∥∥∥∥
L2
dτ + ∥Uµ(tn)− Ūµ∥L2 ,

and when tn goes to infinity, we obtain

∥Uµ(t)− Ūµ∥L2 ≤ κ′

(∫ ∞

t

∥∥∥∥dUµ

dτ
(τ)
∥∥∥∥2

L2
dτ

) θ′
2

.

Therefore, we conclude the assertion.
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3.4 Computational analysis of the asymptotic behavior
The convergence result established in Theorem 2 guarantees that the global solutions of system (2) necessarily
converge towards a stationary solution. However, it does not distinguish the convergence towards a constant
stationary solution (which is a solution of system (11)) or towards a non-constant stationary solution (which
is a solution of system (13)). Therefore, it is of great interest to better analyze the convergence towards non-
constant stationary solutions, since they correspond to the formation of the ecotone, which is the ecological
transition between the forest and its neighbor ecosystem. In this section, since it is known that the complete
asymptotic analysis of system (2) by theoretical methods is very delicate (see notably [21] and [2]), we perform
a computational analysis of the asymptotic behavior of system (2). Our computational method is adapted
from the Statistical Model Checking method [23], which was very recently applied in [5] to the study of the
forest model perturbed by a discrete probabilistic process. This method relies on Monte-Carlo techniques
and provides formal guarantees that can be expressed by means of confidence intervals.

We now describe our computational approach. We first fix a number of time steps T ≫ 1. We denote
by ΦT the set of global solutions of system (2) in the functional space X, which converge to a non-constant
stationary solution. Next, we consider randomly generated initial conditions U0 = (u0, w0)⊤ satisfying

1
10u

− ≤ u0(x) ≤ 19
10u

−,
1
10w

− ≤ w0(x) ≤ 19
10w

−, x ∈ Ω. (38)

The latter conditions are chosen in order to obtain a distribution of U0 = (u0, w0)⊤ in a neighborhood of
the saddle equilibrium U− = (u−, w−)⊤, while guaranteeing non-negativity. Our aim is to estimate the
probability for a global solution U(t, U0), starting from an initial condition of the form (38), to belong to
the set ΦT . Hence, we fix a precision factor ε > 0 and an error rate ϑ ∈ (0, 1). In order to perform the
estimation using the Monte-Carlo method, we sample a fixed amount (Ui)1≤i≤N of global solutions of system
(2). Each global solution Ui is associated with a Bernoulli variable Xi regarding the satisfaction of ΦT , that
is, Xi = 1 if and only if Ui ∈ ΦT . Using Theorem 1 in [16], we obtain the following estimation, provided
N ≥ 4 log

( 2
ϑ

)
/ε2:

P

∣∣∣∣∣∣P(ΦT )− 1
N

∑
1≤i≤N

Xi

∣∣∣∣∣∣ ≤ ε
 ≥ 1− ϑ. (39)

In the following, we will fix T = 1000 and ε = ϑ = 0.1, which will therefore require N ≥ 1200 samples
of system (2). With these notations, we consider Algorithm 1 below. In this algorithm, we generate ran-
domly an initial condition U0 in line 7. In line 8, we compute an approximation Ũ(t, U0) of the global
solution U(t, U0) of system (2). This numerical approximation is performed by applying a splitting numerical
scheme of Strang type [36], with a classical Runge-Kutta method in time and a finite elements discretization
in space. The discretization in space of the domain Ω requires to introduce a mesh domain Ωmesh (lines
9, 10). We emphasize that this splitting scheme is convergent, which guarantees that the probability for
a global solution U(t, U0) to belong to the set ΦT can be estimated by the probability for its numerical
approximation Ũ(t, U0) to belong to the set ΦT . In lines 9, 10, 11, we detect a non-constant equilibrium
by counting the numbers of points x ∈ Ωmesh such that u(T, x) is greater or less than u−, with a numeri-
cal margin m. In practice, Algorithm 1 was implemented with the FreeFem++ language [15], and ran on
the computation server of the Laboratory of Digital Sciences in Nantes (France), in a GNU/Linux envi-
ronment, with a total execution of about 8 days. The complete code is available on the public repository

https://gitlab.univ-nantes.fr/forest/computational-analysis-of-the-forest-model,
along with the complete results of its execution.

The execution of Algorithm 1 leads to the following Computer Assisted Theorem.

Theorem 3 (Computer assisted analysis of the asymptotic behavior). Assume that α = 1, β = 1, a = 0.6,
b = 1, c = 0.9, δ = 10 and µ = 0. Assume morevover that Ω is an elliptic domain of dimensions L = 50 and
ℓ = 30. Then, the probability for a global solution U(t, U0) of system (2), starting from an initial condition
U0 satisfying (38), to converge towards a non-constant stationary solution satisfies the following numerical
estimate:

P(ΦT ) ≳ 0.479.

Obviously, Algorithm 1 can be applied to other parameter values, provided assumption (6) is satisfied.
We show in Table 1 some results of the execution of Algorithm 1. A non-constant stationary is detected
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Algorithm 1 Computational analysis of the asymptotic behavior of system (2)
1: variables
2: integer N ← 1200; // Number of simulations, guaranteeing (39)
3: integer i;
4: integers n0 ← 0, n1, n2; // Counters for analyzing the asymptotic behavior
5: real m← 0.1; // Margin around the saddle u−

6: for i from 1 to N do // Main loop of the Monte-Carlo algorithm
7: generate randomly an initial condition U0 satisfying (38);
8: compute the approximated trajectory Ũ(t, U0) on [0, T ]; // (the numerical scheme is convergent)
9: n1 ← number of points x in Ωmesh such that u(T, x) > u− +m;

10: n2 ← number of points x in Ωmesh such that u(T, x) < u− −m;
11: if n1 > 0 and n2 > 0 then // We detect a non-constant equilibrium
12: n0 ← n0 + 1;
13: end if
14: end for
15: return n0/N ; // We return the frequency of non-constant equilibria

when the counters n1 and n2 are both positive. If one of these counters is equal to zero, then it means
that the solution converges towards a constant stationary solution. Overall, an amount of 575 non-constant
equilibria were detected, over 1200 simulations, which means that at least 0.479% of the global solutions
of system (2) converge to a heterogeneous steady state. Note that the numerical margin m introduced in
Algorithm 1 leads to an over approximation of the probability to be estimated, but prevents from low level
numerical unexpected behavior. We emphasize that in the sequel, we will obtain additional information on
the asymptotic behavior of system (2). Indeed, we will prove the continuity of the flow under a variation of
the perturbation parameter µ (see Theorems 5 and 6), which will ensure that the global solutions of system
(2) with parameter values close to those given in Theorem 3 converge to non-constant equilibria with a close
probability (see Remark 6 below).

Table 1: Partial results of the computational analysis of system (2) with Algorithm 1. Non-constant stationary
solutions are detected when n1 > 0 and n2 > 0.

Simulation 1 2 3 4 5 6 7 8 9 10 . . . 1200
n1 356 0 137 195 390 230 96 154 0 0 . . . 0
n2 236 24 30 140 286 213 383 490 771 170 . . . 451
n0 1 1 2 3 4 6 6 7 7 7 . . . 575

4 Robustness of the weak attractors
In this section, we analyze the robustness of the dynamical system (9) determined by the degenerate forest
kinetic system (2). As explained previously in Remark 2, we have to face a lack of compactness, which
is due to the absence of diffusion in the first equation of system (2). Therefore, as shown in [2], the long
time behavior of the dynamical system (9) cannot be described by means of the global attractor. However,
following [38], we can still analyze the weak convergence of its orbits in the topology of the Banach space Y ,
for simplicity, given by

Y = L2(Ω) = L2(Ω)× L2(Ω). (40)

Hence, for U0 ∈ K and B ⊂ X, we consider the weak L2-ω-limit sets of the dynamical system Sµ(t) given by

ωµ
Y (U0) =

⋂
t≥0

{
Sµ(s)U0; t ≤ s <∞

}Y
, (41)

where the closures are in Y . Note that ωY
µ (U0) actually coincides with the set L2-ωµ(U0) defined in (14).

We bypass the lack of compactness by proving the existence of a family {Rµ} of positively invariant
regions, from which we deduce the continuity of the flow induced by the dynamical system (9). Combined
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with the asymptotic convergence result obtained in Section 3.3, we can further prove the continuity of the
stationary solutions. Therefore, the robustness of the weak ω-limit sets under the effect of the perturbation
parameter µ can be derived. In the end of this section, we address that the case of a small perturbation
µ ∈ (0, µ1) proves to be the most interesting, since the case of a strong perturbation µ > µ2 (µ2 > µ1 > 0)
leads to trivial dynamics.

4.1 Positively invariant regions
The following theorem establishes the existence of a family of positively invariant regions for the dynamical
system {Sµ(t)} defined by (9).

Theorem 4 (Positively invariant region). Let µ ≥ 0. Then the region Rµ ⊂ X defined by

Rµ =
{

(u,w) ∈ X | (u(x), w(x)) ∈ Rµ, ∀x ∈ R
}

(42)

with Rµ = [0, u+
µ ] × [0, w+

µ ] (where (u+
µ , w

+
µ ) is given by (12)) is positively invariant by the flow induced by

the degenerate forest kinetic system (2), that is, if U0 ∈ Rµ, then Sµ(t)U0 ∈ Rµ for all t > 0.

Proof. Let U0 ∈ Rµ, for t ≥ 0, we denote by Uµ(t) = Sµ(t)U0 the global solution of the degenerate reaction-
diffusion system (2) stemming from U0.

We consider a cut-off function χ defined on R by

χ(s) =
{

1
2s

2 if s < 0,
0 if s ≥ 0.

We observe that χ is continuously differentiable on R, and elementary computations show that the following
properties hold for all r, s ∈ R:

χ(s) ≥ 0, χ′(s) ≤ 0, (43)
0 ≤ sχ′(s) ≤ 2χ(s), (44)
rχ′(s) + sχ′(r) ≤ rχ′(r) + sχ′(s). (45)

Now, we introduce the functions ξ and ζ defined for all t ≥ 0 by

ρ1(t) =
∫

Ω
χ(u+

µ − uµ(t))dx, ρ2(t) =
∫

Ω
χ(w+

µ − wµ(t))dx.

Since U0(x) ∈ Rµ = [0, u+
µ ] × [0, w+

µ ] for all x ∈ Ω, we have ρ1(0) = ρ2(0) = 0. Furthermore, since χ(s) ≥ 0
for all s ∈ R, we have ρ1(t) ≥ 0 and ρ2(t) ≥ 0 for all t > 0. Since ρ1 is continuously differentiable on R, we
obtain its time derivative

ρ̇1(t) =
∫

Ω

∂(u+
µ − uµ(t))
∂t

χ′(u+
µ − uµ(t))dx

= α

∫
Ω

(w+
µ − wµ(t))χ′(u+

µ − uµ(t))dx−
∫

Ω
[qµ(u+

µ )− qµ(uµ(t))]χ′(u+
µ − uµ(t))dx

= α

∫
Ω

(w+
µ − wµ(t))χ′(u+

µ − uµ(t))dx−
∫

Ω
Jµ(u+

µ , uµ(t))(u+
µ − uµ(t))χ′(u+

µ − uµ(t))dx

≤ α
∫

Ω
(w+

µ − wµ(t))χ′(u+
µ − uµ(t))dx+ 2J∗

µρ1(t)

by applying (44) and denoting that

Jµ(u+
µ , uµ(t)) =

qµ(u+
µ )− qµ(uµ(t))
u+

µ − uµ(t)
, ∀t ≥ 0.

It is obvious that Jµ(u+
µ , uµ(t)) gives the coefficient of the line that joins the points of coordinates (u+

µ , qµ(u+
µ ))

and (uµ(t), qµ(uµ(t))) in the plane R2. Hence, there exists J∗
µ ≥ 0 such that

Jµ(u+
µ , uµ(t)) ≥ −J∗

µ, ∀t ≥ 0.
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In particular, if assumption (6) is satisfied, which ensures that Jµ(u+
µ , uµ(t)) is positive, then we can easily

erase the corresponding term in the above estimation.
In parallel, the time derivative of ρ2 is given by

ρ̇2(t) =
∫

Ω

∂(w+
µ − wµ(t))
∂t

χ′(w+
µ − wµ(t))dx

= δ

∫
Ω

∆(w+
µ − wµ(t))χ′(w+

µ − wµ(t))dx+ α

∫
Ω

(u+
µ − uµ(t))χ′(w+

µ − wµ(t))dx

− β
∫

Ω
(w+

µ − wµ(t))χ′(w+
µ − wµ(t))dx

≤ α

∫
Ω

(u+
µ − uµ(t))χ′(w+

µ − wµ(t))dx

by applying property (44) and the Green formula with the Neumann boundary condition, i.e., for all t ≥ 0,∫
Ω

∆(w+
µ − wµ(t))χ′(w+

µ − wµ(t))dx = −
∫

Ω

∣∣∇(w+
µ − wµ(t))

∣∣2 dx ≤ 0.

Eventually, for all t ≥ 0, we have

ρ̇1(t) + ρ̇2(t) ≤ α
∫

Ω
(u+

µ uµ(t))χ′(w+
µwµ(t))dx+ α

∫
Ω

(w+
µ − wµ(t))χ′(u+

µ − uµ(t))dx+ 2J∗
µρ1(t)

≤ α
∫

Ω
(w+

µwµ(t))χ′(w+
µwµ(t))dx+ α

∫
Ω

(u+
µ − uµ(t))χ′(u+

µ − uµ(t))dx+ 2J∗
µρ1(t)

≤ 2α[ρ1(t) + ρ2(t)] + 2J∗
µρ1(t)

≤ 2(α+ J∗
µ)[ρ1(t) + ρ2(t)]

by employing property (45). We then apply the Gronwall lemma to deduce that

ρ1(t) + ρ2(t) ≤ [ρ1(0) + ρ2(0)]e2(α+J∗
µ)t ≤ 0, ∀t ≥ 0.

Owing to ρ1(0) = ρ2(0) = 0, we deduce that ρ1(t) + ρ2(t) = 0. Moreover, we have ρ1(t), ρ2(t) ≥ 0, which
yields that ρ1 = ρ2 ≡ 0. The proof is complete.

Although the invariant region Rµ defined by (42) depends on the perturbation parameter µ, we can prove
the existence of a L∞-bound for the dynamical system Sµ(t), which is uniform with respect to µ. Indeed, it
suffices to remark that the homogeneous stationary solution (u+

µ , w
+
µ ) given by (12) that delimits Rµ varies

continuously with µ. Note that such a uniform bound could not be established for the absorbing set Bµ

derived from Theorem 1 (see Remark 2).

Corollary 1 (Uniform bound). There exists a positive constant MR such that, for all µ ∈ [0, µ1] and for all
U0 ∈ Rµ:

∥Sµ(t)U0∥L∞(Ω)2 ≤MR. (46)

Proof. Let µ ∈ [0, µ1] and let U0 ∈ Rµ. For t ≥ 0, we denote
(
uµ(t), wµ(t)

)
= Sµ(t)U0. By virtue of Theorem

4, we have
|uµ(t)| ≤ u+

µ , |wµ(t)| ≤ w+
µ , ∀t ≥ 0.

Next, it is easily seen that (u+
µ , w

+
µ ) depends continuously on µ. Hence we can consider

u+
max = max

0≤µ≤µ1
u+

µ , w+
max = max

0≤µ≤µ1
w+

µ ,

from which we deduce |uµ(t)| ≤ u+
max and |wµ(t)| ≤ w+

max for all t ≥ 0 and for all µ ∈ [0, µ1]. Finally, we
introduce MR = max(u+

max, w
+
max), which achieves the proof.
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4.2 Continuity of the flow and of the stationary solutions
In this section, we consider the perturbed dynamical system Sµ(t) determined by (9) with µ > 0, and the
unperturbed dynamical system S0(t) obtained with µ = 0 in (9). The following theorem establishes the
continuity of the flow Sµ(t) when µ tends to 0, and plays a significant role to prove the continuity of the
stationary solutions.
Theorem 5 (Continuity of the flow). Suppose that assumption (6) holds. Suppose moreover that Rµ ⊂ R0
for all µ ∈ (0, µ1]. Let Uµ(t) = (uµ, wµ)⊤ and U(t) = (u,w)⊤ denote, respectively, the global solutions to
the degenerate forest kinematic model (2) when µ > 0 and µ = 0. Then, there exists a positive constant
ϱ = min

{
q0
2 , β

}
, such that, for all U0 ∈ Rµ and all t ≥ 0, the following estimate is fulfilled:

∥Sµ(t)U0 − S0(t)U0∥2
Y ≤

µ2M2
1 |Ω|

q0(α− ϱ) (e2(α−ϱ)t − 1). (47)

Moreover,
(i) if α− ϱ < 0, then Uµ(t) µ→0+

−→ U(t) in Y uniformly for t ∈ [0,+∞);

(ii) if α− ϱ > 0, then Uµ(t) µ→0+

−→ U(t) in Y uniformly in every compact interval [0, T ] with T > 0.
Proof. Let φ = uµ − u, ψ = wµ − w and Ψ(t) = (φ,ψ)⊤ = Uµ(t)− U(t), then we can rewrite the degenerate
forest kinetic system as following

∂φ

∂t
= αψ − qµ(uµ) + q(u) in (0,+∞)× Ω,

∂ψ

∂t
= δ∆ψ − βψ + αφ in (0,+∞)× Ω,

∂ψ

∂ν
= 0 on (0,+∞)× Γ,

φ(0, x) = φ0(x), ψ(0, x) = ψ0(x) in Ω.

(48)

Multiply the first equation of (48) by φ, and integrate the product in Ω to have
1
2
d

dt
∥φ∥2

L2 = α

∫
Ω
φψdx−

∫
Ω

(qµ(uµ)− q(u))φdx,

we next multiply the second equation of (48) by ψ, and integrate the product in Ω to have
1
2
d

dt
∥ψ∥2

L2 = δ

∫
Ω

∆ψ · ψdx− β∥ψ∥2
L2 + α

∫
Ω
φψdx.

Combine the above two equations to have
1
2
d

dt
∥Ψ∥2

Y = 2α
∫

Ω
φψdx+ δ

∫
Ω

∆ψ · ψdx− β∥ψ∥2
L2 −

∫
Ω

(qµ(uµ)− q(u))φdx.

Note that
2α
∫

Ω
φψdx ≤ α∥φ∥2

L2 + α∥ψ∥2
L2

by employing the Young’s inequality, and

δ

∫
Ω

∆ψ · ψdx = −δ∥∇ψ∥2
L2 ≤ 0

by employing the Green formula with Neumann boundary conditions. Besides, owing to the properties of
the potential Qµ(u), p(u), the Lp interpolation inequality, and the ϵ-Young’s inequality we have

−
∫

Ω
(qµ(uµ)− q(u))φdx = −

∫
Ω

(qµ(uµ)− qµ(u))φdx−
∫

Ω
µp(u)φdx

≤ −q0∥φ∥2
L2 + µM1

∫
Ω
φdx

≤ −q0

2 ∥φ∥
2
L2 + µ2M2

1 |Ω|
2q0

,
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by taking ϵ = q0
2 . Then, it is derived from the above that

1
2
d

dt
∥Ψ∥2

Y ≤ α∥φ∥2
L2 + α∥ψ∥2

L2 − β∥ψ∥2
L2 −

q0

2 ∥φ∥
2
L2 + µ2M2

1 |Ω|
2q0

≤ (α− ϱ)∥Ψ∥2
Y + µ2M2

1 |Ω|
2q0

,

where ϱ = min
{

q0
2 , β

}
, then it follows from the Gronwall lemma that

∥Ψ∥2
Y ≤ e2(α−ϱ)t∥Ψ0∥2

Y + µ2M2
1 |Ω|

q0(α− ϱ) (e2(α−ϱ)t − 1) ≤ µ2M2
1 |Ω|

q0(α− ϱ) (e2(α−ϱ)t − 1).

Furthermore, if α− ϱ < 0, it is obvious that there exists a positive constant ε small enough so that

∥Uµ(t)− U(t)∥Y ≤
ε

3 =

√
2µ2M2

1 |Ω|
q0(α− ϱ) , µ→ 0+.

Similarly, if α− ϱ > 0, then there exists Cµ,t > 0 depending on µ and t so that

∥Uµ(t)− U(t)∥Y ≤ Cµ,t =

√
µ2M2

1 |Ω|
q0(α− ϱ) (e2(α−ϱ)t − 1), µ→ 0+, t ∈ [0, T ], T > 0.

The proof is complete.

By virtue of case (i) in Theorem 5, the following main result can be deduced.

Theorem 6 (Continuity of the stationary solutions). Suppose that the assumptions in Theorem 5 hold. Let
Ūµ, Ū be the stationary solutions to the forest kinematic model (2) when µ > 0 and µ = 0 respectively. Then,
if α− ϱ < 0, we have Ūµ

µ→0−→ Ū in Y .

Proof. It follows from Theorem 2 that Uµ(t)→ Ūµ in Y as t→∞, i.e., for µ ∈ (0, µ1], there exists ε > 0 so
that

∥Uµ(t)− Ūµ∥Y ≤
ε

3 .

In parallel, when µ = 0, Theorem 2 still holds as long as the assumption c − 1
3ab

2 ≥ 0 is satisfied, i.e.,
U(t) → Ū in Y as t → ∞. Thus, we have ∥U(t) − Ū∥Y ≤ ε

3 . Combine with the conclusion in case (i) of
Theorem 5 , we eventually deduce that

∥Ūµ − Ū∥Y ≤ ∥Ūµ − Uµ(t)∥Y + ∥Uµ(t)− U(t)∥Y + ∥U(t)− Ū∥Y ≤ ε, µ→ 0+, t→∞,

which completes the proof.

Remark 5. Note that we can not conclude that Ūµ
µ→0+

−→ Ū in Y when α − ϱ > 0. Due to the assertion
in case (ii) of Theorem 5, the dissipative estimation (47) only holds on a compact time interval [0, T ]. In
particular, the above convergence results and continuity estimations are based on the assumption that Qµ(u)
is convex.

Remark 6 (Extension of Theorem 3). We can apply Theorem 6 in order to extend the parameter domain of
validity of the Computer Assisted Theorem 3. Indeed, we can deduce that the probability for a global solution
of system (2) to converge to a non-constant stationary solution is positive for the parameters values given in
Theorem 3, but with a parameter perturbation µ > 0 small enough.

4.3 A robust family of weak attractors
Numerous results on the effect of a perturbation on the asymptotic behavior of a given dynamical system have
been established. Very often, these results express a type of robustness of the global attractor [7, 9, 14, 27, 37],
whereas results on the robustness of ω-limit sets are rare [8]. More specifically, robustness is often described by
proving the upper or lower semi-continuity of the global attractor with respect to the perturbation parameter.
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As mentioned previously, compactness is a necessary requirement for proving such statements [28]. Here, the
compactness requirement is not fulfilled. However, we can still prove that the set Aµ defined by

Aµ =
⋃

U0∈Rµ

ωµ
Y (U0)

Y

, µ > 0, (49)

where the set ωµ
Y (U0) is given by (41), attracts the trajectories of the forest kinematic model (2) and varies

smoothly with µ. Recall that the distance in Y between a element u ∈ Y and a bounded set B ⊂ Y is defined
as dY (u,B) = infv∈B dY (u, v), and the semi-distance in Y between two bounded sets B1, B2 ⊂ Y is defined
by dY (B1, B2) = supu∈B1 dY (u,B2).

Theorem 7 (A robust family of weak attractors). Suppose that assumption (6) holds. Suppose moreover
that Rµ ⊂ R0 for all µ ∈ (0, µ1]. Then the set Aµ defined by (49) satisfies the following properties:

(i) Aµ is invariant, closed and uniformly bounded in Y , for all µ ∈ (0, µ1];

(ii) Aµ attracts in Y the trajectories of (2) starting in Rµ, for all µ ∈ (0, µ1], that is:

lim
t→+∞

dY

(
Sµ(t)U0,Aµ

)
= 0, (50)

for all U0 ∈ Rµ and for all µ ∈ (0, µ1];

(iii) if α− ϱ < 0, then the family {Aµ}0<µ≤µ1 satisfies

dY

(
Aµ,A0

)
≤ Cµ, (51)

where C is a positive constant and ϱ = min
{

q0
2 , β

}
.

Proof. (i) Let µ ∈ (0, µ1]. It follows from the definition (49) that Aµ is invariant and closed in Y . Next, let
Uµ ∈ Aµ. Then there exists a sequence (Uµ,n) in

⋃
U0∈Rµ

ωµ
Y (U0) such that (Uµ,n) converges to Uµ in Y as n

tends to +∞. By virtue of Theorem 2, we have ωµ
Y (U0) = {ℓµ(U0)}, for each U0 ∈ Rµ, where we shortly

denote by ℓµ(U0) the limit in Y of the trajectory Sµ(t)U0. Hence, we have Uµ,n = ℓµ(Uµ,n,0) for each n ≥ 0,
with Uµ,n,0 ∈ Rµ. Now, Corollary 1 guarantees that ∥Sµ(t)Uµ,n,0∥Y ≤ M̃R for all t ≥ 0, where M̃R is a
positive constant that does not depend on µ. We can deduce that ∥Uµ,n∥Y ≤ M̃R for all n ≥ 0, and finally
that ∥Uµ∥Y ≤ M̃R, for all Uµ ∈ Aµ and for all µ, which proves that Aµ is uniformly bounded in Y .

(ii) Let U0 ∈ Rµ. Theorem 2 guarantees that Sµ(t)U0 converges in Y to ℓµ(U0) as t tends to +∞, with
ωµ

Y (U0) = {ℓµ(U0)}, which can be written

lim
t→+∞

dY

(
Sµ(t)U0, ℓ

µ(U0)
)

= 0.

But we have dY

(
Sµ(t)U0,Aµ

)
≤ dY

(
Sµ(t)U0, ℓ

µ(U0)
)
, since ℓµ(U0) ∈ Aµ, which proves (50).

(iii) Let Uµ ∈ Aµ. We consider again a sequence (Uµ,n) in
⋃

U0∈Rµ

ωµ
Y (U0) such that (Uµ,n) converges to

Uµ in Y as n tends to +∞, and we write again Uµ,n = ℓµ(Uµ,n,0) with Uµ,n,0 ∈ Rµ. Now, we have

dY (Uµ,n,A0) = dY

(
ℓµ(Uµ,n,0),A0

)
≤ dY

(
ℓµ(Uµ,n,0), ℓ0(Uµ,n,0)

)
,

where ℓ0(Uµ,n,0) denotes the limit in Y of the unperturbed trajectory S0(t)Uµ,n,0 (which is well defined, since
Rµ ⊂ R0). Since α < min

{
q0
2 , β

}
, Theorem 5 ensures that

dY

(
ℓµ(Uµ,n,0), ℓ0(Uµ,n,0)

)
≤ Cµ,

for all µ ∈ (0, µ1] and for all n ≥ 0, with C > 0. We can deduce that dY (Uµ,n,A0) ≤ Cµ, for all n ≥ 0 and
consequently that dY (Uµ,A0) ≤ Cµ, for all Uµ ∈ Aµ. We obtain dY (Aµ,A0) ≤ Cµ, which proves (51). The
proof is complete.

Remark 7. Theorem 7 guarantees that the set Aµ defined by (49) attracts in Y the trajectories of the
kinematic forest model (2). However, due to the lack of compactness, it is not known if the set Aµ attracts
the bounded sets of Rµ.

19



4.4 Case of a strong perturbation
We end this section with the case of a strong perturbation, obtained for µ > µ2 (µ2 > µ1 > 0). The following
theorem proves that in this case, the orbits of the dynamical system (9) converge to the trivial equilibrium.

Theorem 8. Let µ > µ2, then there exists ρ∗ > 0 such that for each U0 ∈ K, the solution Uµ(t) of the
degenerate forest kinetic system (2) stemming from U0 satisfies

∥Uµ(t)∥Y ≤ ∥U0∥Y e
−ρ∗t, t ≥ 0.

Proof. Since µ > µ2, there exists ρ > 0 such that qµ(u) ≥
(

α2

β + ρ
)
u if u ≥ 0 and qµ(u) ≤

(
α2

β + ρ
)
u if

u ≤ 0. Hence we have uqµ(u) ≥ ( α2

β + ρ)u2, for all u ∈ R. Now we introduce the energy function L defined
for t ≥ 0 by

L(t) = 1
2

∫
Ω

[u2
µ(t) + w2

µ(t)]dx,

which is continuously differentiable. We easily show the estimate

L̇(t) ≤ 2α
∫

Ω
uµ(t)wµ(t)dx−

(
α2

β
+ ρ

)∫
Ω
u2

µ(t)dx− β
∫

Ω
w2

µ(t)dx

by applying the Green formula with the Neumann boundary and the assumption above. Now we apply the
generalized Young’s inequality to write

2α
∫

Ω
uµ(t)wµ(t)dx ≤ α

ε

∫
Ω
u2

µ(t)dx+ αε

∫
Ω
w2

µ(t)dx,

in which we can choose a proper ε > 0 to ensure α
ε = α2

β + ρ
2 , i.e., ε = α

α2

β + ρ
2

. Therefore, we obtain

L̇(t) ≤ −ρ2

∫
Ω
u2

µ(t)dx− (β − αε)
∫

Ω
w2

µ(t)dx,

where β − αε > 0 is guaranteed by the choice of ε. Note that ρ∗ = min{ρ, β − αε}, we thus obtain that
L̇(t) ≤ −ρ∗L(t). Employing again the Gronwall lemma, we complete the proof.

5 Numerical simulations illustrating ecological properties
In this section, we aim to illustrate with relevant numerical simulations the theoretical results established
above, and to show how the perturbed forest kinetic model (2) fulfills various ecological properties of interest.
Firstly, we experiment the effect of several perturbations on the position of the ecotone, which corresponds to
the frontier between the forest and another ecosystem (as for instance savanna in tropical regions, or tundra
in boreal regions). These perturbations are expected to model the impact of global warming on the biological
dynamics of the ecosystem. However, as the complex mechanisms of global warming are not yet precisely
understood, we experiment several functions for the perturbation p(u) involved in (3), mainly determined by
polynomial or sinusoidal expressions. Then, we present numerical results that prove that the forest kinetic
model (2) can reproduce the formation of chaotic patterns [29].

As in Section 3.4, our numerical computations were performed using a Strang type splitting scheme [36],
with a finite elements discretization in space, and a Runge-Kutta method in time. The computation code was
again executed in a GNU/LINUX environment, with the free software FreeFem++ [15]. For all simulations,
we have considered an elliptic domain Ω of width L = 500 and height ℓ = 300; we have again fixed the
parameters of the forest kinetic model (2) as α = β = 1, δ = 10, a = 0.6, b = 1, c = 0.9. With these
parameters, the unperturbed problem admits three homogeneous equilibrium states given by O = (0, 0),
U− = (1− 1√

6 , 1−
1√
6 ) and U+ = (1 + 1√

6 , 1 + 1√
6 ).
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5.1 Shift of the ecotone or modification of the persistence equilibrium
One of the most fascinating properties of forest ecosystems is their ability to migrate in space, while they are
obviously populations of sedentary individuals. Recently, it has been proved in [2] that this indirect diffusion,
when combined with a hysteresis process, can explain the separation of trajectories, that reproduces the
formation of an ecotone (see [30]). As forest ecosystems are highly destabilized by climatic and anthropic
perturbations, it is relevant to investigate the impact of a perturbation on the position of the ecotone. In
the ecological science literature, it is well described that the ecotone can be simply shifted to the north or
to the south, depending on the nature of the perturbation and on the geographical region, or can be highly
modified and exhibit the formation of chaotic or fractal patterns [40]. For instance, in [11], a northward shift
is proved to occur in the boreal forest-tundra ecotone; in [31], the tropical forest-savanna ecotone is studied
and it is shown that climate change can modify the trees density near the ecotone; in [33], island tropical
montane cloud forests are studied and it is observed that climate change might push them towards higher
elevations.

Here, to reproduce these complex mechanisms, we consider two shift perturbations s1, s2 defined by

s1(u) = auu−(u− u+), s2(u) = −auu−(u− u+). (52)

The effect of these shift perturbations on the cubic function q(u) is depicted in Figure 1: when µ increases,
the persistence equilibrium U+

µ is not modified, thus can be denoted U+. However, the saddle equilibrium
U−

µ is shifted to the left under the action of s1(u), or to the right under the action of s2(u). The shift can
also be visualized on the energy levels of the potential Hµ(u,w) defined by (2.2), as illustrated in Figure 2.
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Figure 1: Effect of the shift perturbations s1(u), s2(u) defined by (52) on the cubic function q(u). (a) Shape of the
unperturbed cubic function q(u). (b) When µ increases, the persistence equilibrium U+

µ = U+ is not modified; the
saddle equilibrium U−

µ is shifted to the left under the action of s1(u). (c) The saddle equilibrium U−
µ is shifted to the

right under the action of s2(u).
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Figure 2: Effect of the shift perturbations s1(u), s2(u) defined by (52) on the energy levels of the potential Hµ(u, w)
defined by (2.2). (a) Energy levels of the unperturbed potential. (b) Under the action of s1(u), the saddle U−

µ is
shifted to the left, whereas the persistence equilibrium U+

µ = U+ is not modified. (c) Under the action of s2(u), the
saddle U−

µ is shifted to the right.

Next, we have considered an initial condition
(
u0(x), w0(x)

)
which is equally distributed within the basins

of attraction of the extinction equilibrium O and of the persistence equilibrium U+
µ . As proved in [3], the

trajectory of the forest kinetic model (2) starting from such an initial condition is expected to converge to
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Figure 3: Numerical simulation showing the effect of the shift perturbations s1(u), s2(u) on the position of the
ecotone. In the last row, the position of the ecotone is highlighted by a brown band. Under the action of s1(u), the
ecotone is shifted to the left (second column). Under the action of s2(u), it is shifted to the right (third column).

a heterogeneous stationary solution that reproduces the ecotone. Hence, we have computed the trajectories(
u(t, x), w(t, x)

)
,
(
uµ(t, x), wµ(t, x)

)
, of the unperturbed problem and of the problem perturbed by s1(u) or

s2(u), respectively. The results are depicted in Figure 3, where we focus on the density of trees. In this figure,
the color semantics is chosen according to intuition: deep green illustrates a high density of trees, while pale
green represents a low density of trees. We have chosen a 3D view in order to visualize the formation of
the ecotone. In the first column, we show the time evolution of the trees density u(t, x) of the unperturbed
trajectory, from t = 0 (at the top), until t = 1000 (at the bottom). In the second and third columns, we show
the time evolution of the trees density uµ(t, x) of the trajectories perturbed by s1(u) and s2(u), respectively.
In the asymptotic phase (t = 1000), the ecotone is highlighted by a brown band, located at the position of
the domain Ω where the density of trees decreases very rapidly. As expected, the ecotone is shifted to the left
under the action of s1(u), which implies that the area occupied by the high density of trees spreads in the
domain Ω. If the perturbation parameter µ is increased, the area occupied by a high density of trees can even
invade the whole domain Ω. At the opposite, the ecotone is shifted to the right under the action of s2(u),
which implies that the area occupied by a high density of trees shrinks. Hence, these numerical simulations
show that the perturbed forest model (2) can faithfully reproduce ecological observations of great interest.

Afterwards, we have also experimented two perturbations m1, m2 that are expected to modify the persis-
tence equilibrium U+

µ , without impacting the position of the ecotone. The perturbations m1, m2 are defined
by the polynomial expressions

m1(u) = auu+(u− u−), m2(u) = −auu+(u− u−). (53)

The effects of the perturbations m1(u), m2(u) on the cubic function q(u) and on the energy levels of the
potential H(u,w) are depicted in Figures 4 and 5, respectively. Under the action of the perturbation m1(u),
the persistence equilibrium U+

µ is decreased, whereas it is increased under the action of the perturbation
m2(u). In parallel, the saddle point U−

µ is not modified, thus can be denoted U−.
With the perturbations m1(u), m2(u) defined by (53), we have again considered an initial condition(

u0(x), w0(x)
)

which is equally distributed within the basins of attraction of the extinction equilibrium O
and of the persistence equilibrium U+

µ . The perturbed trajectories starting from that initial condition are
depicted in Figure 6. We observe that the trajectory behaves as expected, with a modification of the level of
the persistence equilibrium U+

µ and no modification of the position of the ecotone. It is worth noting that this
behavior reproduces a non trivial ecological transition which is well observed and described: indeed, under
the action of climate change, forest ecosystems can exhibit a deep modification of their dynamics, such as,
for instance, the savannization of the Amazon forest (see e.g. [35]), that leads to a sharp fall of the density
of trees in the ecosystem.
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Figure 4: Effect of the perturbations m1(u), m2(u) defined by (53) on the cubic function q(u). (a) Shape of the
unperturbed cubic function q(u). (b) The persistence equilibrium U+

µ decreases under the action of m1(u). (c) It
increases under the action of m2(u). In parallel, the saddle point U−

µ = U− is not modified.
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Figure 5: Effect of the perturbations m1(u), m2(u) defined by (53) on the energy levels of the potential Hµ(u, w). (a)
Energy levels of the unperturbed potential. (b) The persistence equilibrium U+

µ decreases under the action of m1(u).
(c) It increases under the action of m2(u).
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Figure 6: Numerical simulation showing the effect of the perturbations m1(u), m2(u) on the level of the persistence
equilibrium U+

µ . In the last row, the position of the ecotone is again highlighted by a brown band. Under the action of
m1(u), the level of persistence is decreased (second column). Under the action of m2(u), it is increased (third column).
In parallel, the position of the ecotone is not varied.
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5.2 Emergence of intermediate ecosystems
We continue with numerical simulations of the forest kinematic model (2) perturbed by a periodic process.
Hence, we consider the perturbations p1(u), p2(u) and p3(u) defined by

p1(u) = sin(20u), p2(u) = sin(9u), p3(u) = sin(11u). (54)

The effects of the perturbations p1(u), p2(u) and p3(u) are depicted in Figures 7 and 8, with µ = 0.035,
µ = 0.09 and µ = 0.07, respectively. Note that these values of the perturbation parameter µ guarantee that
the perturbed cubic function qµ(u) is still monotone; however, it admits more than three intersection points
with the line w = α2

β u. These supplementary intersection points are expected to perturb the form and the
position of the ecotone. In parallel, the positions of the intersection points can modify the values of the trees
density at equilibrium.
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Figure 7: Effect of the perturbations p1(u), p2(u), p3(u) defined by (54) on the cubic function q(u). (a) Shape of
the unperturbed cubic function q(u). (b)-(c)-(d) The perturbed function qµ(u) admits more than three intersection
points with the line w = α2

β
u.
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Figure 8: Effect of the perturbations p1(u), p2(u), p3(u) defined by (54) on the energy levels of the potential H(u, w).
(a) Energy levels of the unperturbed potential H(u, w). (b)-(c)-(d) The perturbed potential Hµ(u, w) admits a sup-
plementary saddle point and a supplementary sink.
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Figure 9: Numerical simulation showing the effect of the periodic perturbations p1(u), p2(u), p3(u) on the dynamics
of the forest model (2). In the last row, the positions of the ecotones are highlighted by brown bands. Under the action
of the perturbations, the form of the ecotone is modified and intermediate ecosystems emerge. The size and trees
densities of these intermediate ecosystems are very sensitive to the nature of the perturbation.
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With the perturbations p1(u), p2(u), p3(u) defined by (54), we have again considered an initial condition(
u0(x), w0(x)

)
which is equally distributed within the basins of attraction of the extinction equilibrium O and

of the persistence equilibrium U+
µ . The perturbed trajectories starting from that initial condition are depicted

in Figure 9. In this figure, we show the time evolution of the density of trees uµ(t, x) for each perturbation.
We observe that the position and the form of the ecotone are modified and intermediate ecosystems emerge.
The size and trees densities of these intermediate ecosystems are very sensitive to the intensity and the nature
of the perturbation. In each case, the perturbation leads to a decrease of the total living biomass, which is
in concordance with ecological observations (see for instance [13]).

5.3 Randomly generated initial conditions lead to chaotic patterns
We end this section with numerical simulations of the forest kinetic model (2), starting from randomly
generated initial conditions. We have chosen an initial condition

(
u0(x), w0(x)

)
, x ∈ Ω, using the random

number generator randreal() of the FreeFem++ software, and we have computed two trajectories of the
forest kinetic model (2). The first trajectory

(
u(t, x), w(t, x)

)
is the solution of the unperturbed problem

(that is, with µ = 0), while the second trajectory
(
uµ(t, x), wµ(t, x)

)
is the solution of the perturbed problem,

with p(u) = sin(20u) and µ = 0.035.
Our results are presented in Figure 10. In this figure, the left column shows the time evolution of the

density of trees u(t, x) (of the unperturbed trajectory), from t = 0 (at the top), until t = 2000 (at the
bottom). The color semantics is the same as in Figures 3 and 6 (deep green models a high density of trees,
and pale green corresponds to a low density of trees). However, we have chosen a map view rather than a 3D
view, so as to better visualize the formation of patterns. The second column shows the time evolution of the
density of trees uµ(t, x) (of the perturbed trajectory), with the same color semantics. The third and fourth
columns show the time evolution of the densities of seeds w(t, x) and wµ(t, x) (unperturbed and perturbed
trajectories, respectively); white and yellow correspond to a high density of seeds, while blue and brown
model a low density of seeds.
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Figure 10: Numerical simulation showing the time evolution of the densities of trees u(t, x), uµ(t, x) (first and second
columns) and of the densities of seeds w(t, x), wµ(t, x) (third and fourth columns), corresponding to an unperturbed
trajectory and a perturbed trajectory of the forest kinetic model (2), respectively. Starting from a randomly generated
initial condition, the trajectories converge to a stationary solution that exhibits spots patterns with a low density of
trees and seeds.
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We observe that the trajectories converge to a heterogeneous stationary solution that exhibits spots
patterns with a low density of trees and seeds. For instance, a white spot of low density of trees is located at
the position (400, 200) of the domain Ω (first and second columns, at the bottom), in correspondence with a
brown spot of low density of seeds, located at the same position (third and fourth columns, at the bottom).
According to Theorem 7, the stationary solution is robust with respect to a variation of the perturbation
parameter µ, that is, the spots are smoothly modified by an increase of µ. Hence, modifications of the
spots can be identified after a careful look, but these modifications are small. However, these spots are
very sensitive a change of the initial condition

(
u0(x), w0(x)

)
. Indeed, we show in Figure 11 the limits of

two other trajectories
(
u(t, x), w(t, x)

)
,
(
uµ(t, x), wµ(t, x)

)
, starting from another randomly generated initial

condition
(
u0(x), w0(x)

)
. As in Figure 10, we observe the formation of spots, modeling a low density of

trees and seeds. While these spots are again smoothly modified by the perturbation parameter µ, their
number and location are completely different in Figures 10 and 11. Therefore, these patterns admit a chaotic
behavior. It is worth emphasizing that such a chaotic behavior has been intensely studied in non degenerate
reaction-diffusion systems admitting a diffusion driven instability (see notably [29] and the references therein);
however, chaotic patterns emerging in degenerate reaction-diffusion systems as the forest model (2) have not
been as much analyzed. In particular, given an initial condition

(
u0(x), w0(x)

)
, it seems very difficult to

predict the position of spots of the corresponding trajectory.
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Figure 11: Numerical simulation showing the limits of two trajectories
(
u(t, x), w(t, x)

)
,
(
uµ(t, x), wµ(t, x)

)
starting

from another randomly generated initial condition
(
u0(x), w0(x)

)
. The trajectories converge to a stationary solution

that again exhibits spots patterns with a low density of trees and seeds. However, the number and location of spots are
completely different than in Figure 10.

6 Conclusion
In this paper, we studied the dynamics of a perturbed forest kinematic model (2). We firstly presented the
preliminary results. Then, we established the asymptotic convergence result by proving that the Lyapunov
function generated by the system satisfies the  Lojasiewicz-Simon gradient inequality, which is guaranteed by
the monotonicity of the nonlinear perturbation qµ(u), i.e. when assumption (6) holds. Besides, we provided an
original algorithm, based on the Monte-Carlo method, to further clarify the convergence result. Furthermore,
we established the existence of a family of positively invariant regions for the dynamical system {Sµ(t)}, and
proved the continuity of the flow, which yields the continuity of the stationary solutions. We finally addressed
the robustness of the weak attractors, which is highly nontrivial. However, when the monotonicity assumption
is violated, no rigorous result can be obatined. We also presented the case of a strong perturbation, which
leads to trivial dynamics. At last but not the least, we performed numerical simulations to better understand
the forest ecosystem. We showed the modification of the persistence equilibrium, and the emergence of
intermediate ecosystems associated with different perturbations. We also introduced the chaotic patterns
caused by randomly generated initial conditions.
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