Uncertainty quantification and global sensitivity analysis of seismic fragility curves using kriging
Résumé
Seismic fragility curves have been introduced as key components of seismic probabilistic risk assessment studies. They express the probability of failure of mechanical structures conditional to a seismic intensity measure and must take into account various sources of uncertainties, the so-called epistemic uncertainties (i.e., coming from the uncertainty on the mechanical parameters of the structure) and the aleatory uncertainties (i.e., coming from the randomness of the seismic ground motions). For simulation-based approaches we propose a methodology to build and calibrate a Gaussian process surrogate model to estimate a family of nonparametric seismic fragility curves for a mechanical structure by propagating both the surrogate model uncertainty and the epistemic ones. Gaussian processes have indeed the main advantage to propose both a predictor and an assessment of the uncertainty of its predictions. In addition, we extend this methodology to sensitivity analysis. Global sensitivity indices such as aggregated Sobol' indices and kernel-based indices are proposed to know how the uncertainty on the seismic fragility curves is apportioned according to each uncertain mechanical parameter. This comprehensive uncertainty quantification framework is finally applied to an industrial test case consisting of a part of a piping system of a pressurized water reactor.