miR-27a-3p regulates expression of intercellular junctions at the brain endothelium and controls the endothelial barrier permeability - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue (Article De Synthèse) PLoS ONE Année : 2022

miR-27a-3p regulates expression of intercellular junctions at the brain endothelium and controls the endothelial barrier permeability

Résumé

Background The brain endothelial barrier permeability is governed by tight and adherens junction protein complexes that restrict paracellular permeability at the blood-brain barrier (BBB). Dysfunction of the inter-endothelial junctions has been implicated in neurological disorders such as multiple sclerosis, stroke and Alzheimer’s disease. The molecular mechanisms underlying junctional dysfunction during BBB impairment remain elusive. MicroRNAs (miRNAs) have emerged as versatile regulators of the BBB function under physiological and pathological conditions, and altered levels of BBB-associated microRNAs were demonstrated in a number of brain pathologies including neurodegeneration and neuroinflammatory diseases. Among the altered micro-RNAs, miR-27a-3p was found to be downregulated in a number of neurological diseases characterized by loss of inter-endothelial junctions and disruption of the barrier integrity. However, the relationship between miR-27a-3p and tight and adherens junctions at the brain endothelium remains unexplored. Whether miR-27a-3p is involved in regulation of the junctions at the brain endothelium remains to be determined. Methods Using a gain-and-loss of function approach, we modulated levels of miR-27a-3p in an in-vitro model of the brain endothelium, key component of the BBB, and examined the resultant effect on the barrier paracellular permeability and on the expression of essential tight and adherens junctions. The mechanisms governing the regulation of junctional proteins by miR-27a-3p were also explored. Results Our results showed that miR-27a-3p inhibitor increases the barrier permeability and causes reduction of claudin-5 and occludin, two proteins highly enriched at the tight junction, while miR-27a-3p mimic reduced the paracellular leakage and increased claudin-5 and occludin protein levels. Interestingly, we found that miR-27-3p induces expression of claudin-5 and occludin by downregulating Glycogen Synthase Kinase 3 beta (GSK3ß) and activating Wnt/ß-catenin signaling, a key pathway required for the BBB maintenance. Conclusion For the first time, we showed that miR-27a-3p is a positive regulator of key tight junction proteins, claudin-5 and occludin, at the brain endothelium through targeting GSK3ß gene and activating Wnt/ß-catenin signaling. Thus, miR-27a-3p may constitute a novel therapeutic target that could be exploited to prevent BBB dysfunction and preserves its integrity in neurological disorders characterized by impairment of the barrier’s function.
Fichier principal
Vignette du fichier
Harati et al.pdf (1.92 Mo) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-04476217 , version 1 (24-02-2024)

Licence

Paternité

Identifiants

Citer

Rania Harati, Saba Hammad, Abdelaziz Tlili, Mona Mahfood, Aloïse Mabondzo, et al.. miR-27a-3p regulates expression of intercellular junctions at the brain endothelium and controls the endothelial barrier permeability. PLoS ONE, 2022, 17 (1), pp.e0262152. ⟨10.1371/journal.pone.0262152⟩. ⟨hal-04476217⟩
4 Consultations
3 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More