Explicit lower bounds for the height in Galois extensions of number fields
Résumé
Amoroso and Masser proved that for every real ϵ > 0, there is a constant c(ϵ) > 0, with the property that, for every algebraic number α such that Q(α)/Q is a Galois extension, the height of α is either 0 or at least c(ϵ)[Q(α) : Q]-ϵ. In this article, we establish an explicit version of this theorem.
Domaines
Mathématiques [math]
Fichier principal
Height_of_generator_of_galois_extension (6).pdf (361.89 Ko)
Télécharger le fichier
Origine | Fichiers produits par l'(les) auteur(s) |
---|