Parkinson’s disease-derived α-synuclein assemblies combined with chronic-type inflammatory cues promote a neurotoxic microglial phenotype - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Journal of Neuroinflammation Année : 2024

Parkinson’s disease-derived α-synuclein assemblies combined with chronic-type inflammatory cues promote a neurotoxic microglial phenotype

Résumé

Parkinson's disease (PD) is a common age-related neurodegenerative disorder characterized by the aggregation of α-Synuclein (αSYN) building up intraneuronal inclusions termed Lewy pathology. Mounting evidence suggests that neuron-released αSYN aggregates could be central to microglial activation, which in turn mounts and orchestrates neuroinflammatory processes potentially harmful to neurons. Therefore, understanding the mechanisms that drive microglial cell activation, polarization and function in PD might have important therapeutic implications. Here, using primary microglia, we investigated the inflammatory potential of pure αSYN fibrils derived from PD patients. We further explored and characterized microglial cell responses to a chronic-type inflammatory stimulation combining PD patient-derived αSYN fibrils (F PD), Tumor necrosis factor-α (TNFα) and prostaglandin E 2 (PGE 2) (TPF PD). We showed that F PD hold stronger inflammatory potency than pure αSYN fibrils generated de novo. When combined with TNFα and PGE 2 , F PD polarizes microglia toward a particular functional phenotype departing from F PD-treated cells and featuring lower inflammatory cytokine and higher glutamate release. Whereas metabolomic studies showed that TPF PD-exposed microglia were closely related to classically activated M1 proinflammatory cells, notably with similar tricarboxylic acid cycle disruption, transcriptomic analysis revealed that TPF PD-activated microglia assume a unique molecular signature highlighting upregulation of genes involved in glutathione and iron metabolisms. In particular, TPF PD-specific upregulation of Slc7a11 (which encodes the cystine-glutamate antiporter xCT) was consistent with the increased glutamate response and cytotoxic activity of these cells toward midbrain dopaminergic neurons in vitro. Together, these data further extend the structure-pathological relationship of αSYN fibrillar polymorphs to their innate immune properties and demonstrate that PD-derived αSYN fibrils, TNFα and PGE 2 act in concert to drive microglial cell activation toward a specific and highly neurotoxic chronic-type inflammatory phenotype characterized by robust glutamate release and iron retention.
Fichier principal
Vignette du fichier
Yildirim-Balatan 2024.pdf (11.09 Mo) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-04472638 , version 1 (22-02-2024)

Identifiants

Citer

Cansu Yildirim-Balatan, Alexis Fenyi, Pierre Besnault, Lina Gomez, Julia E Sepulveda-Diaz, et al.. Parkinson’s disease-derived α-synuclein assemblies combined with chronic-type inflammatory cues promote a neurotoxic microglial phenotype. Journal of Neuroinflammation, 2024, 21 (54), ⟨10.1186/s12974-024-03043-5⟩. ⟨hal-04472638⟩
7 Consultations
2 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More