Product of three primes in large arithmetic progressions - Archive ouverte HAL
Article Dans Une Revue International Journal of Number Theory Année : 2022

Product of three primes in large arithmetic progressions

Résumé

For any ϵ > 0, there exists q 0 (ϵ) such for any q ≥ q 0 (ϵ) and any invertible residue class a modulo q, there exists a natural number that is congruent to a modulo q and that is the product of exactly three primes, all of which are below q 3 2 +ϵ. If we restrict our attention to odd moduli q that do not have prime factors congruent to 1 mod 4, we can find such primes below q 11 8 +ϵ. If we further restrict our set of moduli to prime q that are such that (q-1, 4 • 7 • 11 • 17 • 23 • 29) = 2, we can find such primes below q 6 5 +ϵ. Finally, for any ϵ > 0, there exists q 0 (ϵ) such that when q ≥ q 0 (ϵ), there exists a natural number that is congruent to a modulo q and that is the product of exactly four primes, all of which are below q(log q) 6 .
Fichier principal
Vignette du fichier
Footnote-Asymptotic-06-IJNT.pdf (398.62 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04467242 , version 1 (20-02-2024)

Identifiants

Citer

Ramachandran Balasubramanian, Olivier Ramaré, Priyamvad Srivastav. Product of three primes in large arithmetic progressions. International Journal of Number Theory, 2022, 19 (04), pp.843-857. ⟨10.1142/S1793042123500422⟩. ⟨hal-04467242⟩
34 Consultations
23 Téléchargements

Altmetric

Partager

More