Arithmetical properties of double Möbius-Bernoulli numbers - Archive ouverte HAL
Article Dans Une Revue Open Mathematics Journal Année : 2019

Arithmetical properties of double Möbius-Bernoulli numbers

Résumé

Abstract Given positive integers n , n ′ and k , we investigate the Möbius-Bernoulli numbers M k ( n ), double Möbius-Bernoulli numbers M k (n, n ′), and Möbius-Bernoulli polynomials M k ( n )( x ). We find new identities involving double Möbius-Bernoulli, Barnes-Bernoulli numbers and Dedekind sums. In part of this paper, the Möbius-Bernoulli polynomials M k ( n )( x ), can be interpreted as critical values of the following Dirichlet type L -function $$\begin{array}{} \displaystyle L_{HM}(s;n,x):=\sum_{d|n} \sum_{m= 0}^\infty \frac{\mu(d)}{(md+x)^s} \, \, \text{(for Re} (s) \gt 1), \end{array} $$ which has analytic continuation to the whole s -complex plane, where μ is the Möbius function.
Fichier principal
Vignette du fichier
10.1515_math-2019-0006.pdf (435.7 Ko) Télécharger le fichier
Origine Publication financée par une institution

Dates et versions

hal-04462933 , version 1 (04-04-2024)

Identifiants

Citer

Abdelmejid Bayad, Daeyeoul Kim, Yan Li. Arithmetical properties of double Möbius-Bernoulli numbers. Open Mathematics Journal, 2019, 17 (1), pp.32-42. ⟨10.1515/math-2019-0006⟩. ⟨hal-04462933⟩
20 Consultations
12 Téléchargements

Altmetric

Partager

More