SAT-based Learning of Computation Tree Logic - Archive ouverte HAL
Pré-Publication, Document De Travail (Preprint/Prepublication) Année : 2024

SAT-based Learning of Computation Tree Logic

Adrien Pommellet
Daniel Stan
  • Fonction : Auteur
  • PersonId : 1368895
  • IdHAL : danielstan
Simon Scatton
  • Fonction : Auteur
  • PersonId : 1352492

Résumé

The CTL learning problem consists in finding for a given sample of positive and negative Kripke structures a distinguishing CTL formula that is verified by the former but not by the latter. Further constraints may bound the size and shape of the desired formula or even ask for its minimality in terms of syntactic size. This synthesis problem is motivated by explanation generation for dissimilar models, e.g. comparing a faulty implementation with the original protocol. We devise a SAT-based encoding for a fixed size CTL formula, then provide an incremental approach that guarantees minimality. We further report on a prototype implementation whose contribution is twofold: first, it allows us to assess the efficiency of various output fragments and optimizations. Secondly, we can experimentally evaluate this tool by randomly mutating Kripke structures or syntactically introducing errors in higher-level models, then learning CTL distinguishing formulas.
Fichier principal
Vignette du fichier
main.pdf (725.28 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04459133 , version 1 (15-02-2024)
hal-04459133 , version 2 (16-04-2024)

Licence

Identifiants

  • HAL Id : hal-04459133 , version 1

Citer

Adrien Pommellet, Daniel Stan, Simon Scatton. SAT-based Learning of Computation Tree Logic. 2024. ⟨hal-04459133v1⟩
35 Consultations
56 Téléchargements

Partager

More