RANK TWO ARTIN-SCHELTER REGULAR ALGEBRAS AND NON COMMUTING DERIVATIONS - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2024

RANK TWO ARTIN-SCHELTER REGULAR ALGEBRAS AND NON COMMUTING DERIVATIONS

Vincent Beck
César Lecoutre
  • Fonction : Auteur
  • PersonId : 1185782

Résumé

If $\Delta$ and $\Gamma$ are two derivations of a commutative algebra $A$ such that $\Delta\Gamma-\Gamma\Delta=\Delta$ is locally nilpotent, one can endow $A$ with a new product $\ast$ whose filtered semiclassical limit is the Poisson structure $\Delta\wedge\Gamma$. In this article we first study theses (Poisson) algebras from an algebraic point of view, and when $A$ is a polynomial algebra, we investigate their homological properties. In particular, when the derivations $\Delta$ and $\Gamma$ are linear, the algebras $(A,\ast)$ provide, in each dimension at least four, new examples of multiparameter families of Artin-Schelter regular algebras. These algebras are deformations of Poisson algebras $(A,\Delta\wedge\Gamma)$ of rank $2$, thus explaining the title of the article. Assuming furthermore a technical condition on $\Gamma$, we show that the algebra $(A,\ast)$ is Calabi-Yau if and only if the trace of $\Gamma$ is equal to $1$ if and only if the Poisson algebra $(A,\Delta\wedge\Gamma)$ is unimodular. Since the trace of $\Gamma$ is a linear function of the parameters, the algebras $(A,\ast)$ also provide, in each dimension at least four, new examples of multiparameter families of Calabi-Yau algebras.
Fichier principal
Vignette du fichier
Solvable pairs - V4.pdf (525.06 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04458688 , version 1 (15-02-2024)
hal-04458688 , version 2 (26-02-2024)
hal-04458688 , version 3 (06-06-2024)

Licence

Identifiants

Citer

Vincent Beck, César Lecoutre. RANK TWO ARTIN-SCHELTER REGULAR ALGEBRAS AND NON COMMUTING DERIVATIONS. 2024. ⟨hal-04458688v3⟩
72 Consultations
38 Téléchargements

Altmetric

Partager

More