Recursive POD expansion for reaction-diffusion equation - Archive ouverte HAL
Article Dans Une Revue Advanced Modeling and Simulation in Engineering Sciences Année : 2016

Recursive POD expansion for reaction-diffusion equation

Résumé

This paper focuses on the low-dimensional representation of multivariate functions. We study a recursive POD representation, based upon the use of the power iterate algorithm to recursively expand the modes retained in the previous step. We obtain general error estimates for the truncated expansion, and prove that the recursive POD representation provides a quasi-optimal approximation in $$L^2$$ L 2 norm. We also prove an exponential rate of convergence, when applied to the solution of the reaction-diffusion partial differential equation. Some relevant numerical experiments show that the recursive POD is computationally more accurate than the Proper Generalized Decomposition for multivariate functions. We also recover the theoretical exponential convergence rate for the solution of the reaction-diffusion equation.
Fichier principal
Vignette du fichier
hal-04458367.pdf (945.97 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-04458367 , version 1 (20-02-2024)

Identifiants

Citer

M. Azaïez, F. Ben Belgacem, T. Chacón Rebollo. Recursive POD expansion for reaction-diffusion equation. Advanced Modeling and Simulation in Engineering Sciences, 2016, Model order reduction: POD, PGD and reduced bases, 3 (1), pp.1-22. ⟨10.1186/s40323-016-0060-1⟩. ⟨hal-04458367⟩
15 Consultations
8 Téléchargements

Altmetric

Partager

More