Long-range multi-scalar models at three loops
Résumé
Abstract We compute the three-loop beta functions of long-range multi-scalar models with general quartic interactions. The long-range nature of the models is encoded in a kinetic term with a Laplacian to the power 0 < ζ < 1, rendering the computation of Feynman diagrams much harder than in the usual short-range case ( ζ = 1). As a consequence, previous results stopped at two loops, while seven-loop results are available for short-range models. We push the renormalization group analysis to three loops, in an ϵ = 4 ζ − d expansion at fixed dimension d < 4, extensively using the Mellin–Barnes representation of Feynman amplitudes in the Schwinger parametrization. We then specialize the beta functions to various models with different symmetry groups: O ( N ), ( Z 2 ) N ⋊ S N , and O ( N ) × O ( M ). For such models, we compute the fixed points and critical exponents.