Subfield attack: leveraging composite-degree extensions in the Quotient Ring transform - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2024

Subfield attack: leveraging composite-degree extensions in the Quotient Ring transform

Résumé

In this note, we show that some of the parameters of the Quotient-Ring transform proposed for VOX are vulnerable. More precisely, they were chosen to defeat an attack in the field extension F q l obtained by quotienting Fq[X] by an irreducible polynomial of degree l. We observe that we may use a smaller extension F q l ′ for any l ′ |l, in which case the attacks apply again. We also introduce a simple algebraic attack without the use of the MinRank problem to attack the scheme. These attacks concern a subset of the parameter sets proposed for VOX: I, Ic, III, IIIa, V, Vb. We estimate the cost of our attack on these parameter sets and find costs of at most 2 67 gates, and significantly lower in most cases. In practice, our attack requires 0.3s, 1.35s, 0.56s for parameter sets I,III,V for VOX [1], and 56.7s, 6.11s for parameter sets IIIa, Vb [2].
Fichier principal
Vignette du fichier
note.pdf (332.17 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04453298 , version 1 (12-02-2024)

Identifiants

  • HAL Id : hal-04453298 , version 1

Citer

Pierre Pébereau. Subfield attack: leveraging composite-degree extensions in the Quotient Ring transform. 2024. ⟨hal-04453298⟩
84 Consultations
57 Téléchargements

Partager

More