Forecasting with pairwise gaussian Markov models - Archive ouverte HAL
Communication Dans Un Congrès Année : 2024

Forecasting with pairwise gaussian Markov models

Résumé

Pairwise Markov Models (PMMs) extend the wellknown Hidden Markov Models (HMMs). Being significantly more general, PMMs enable several types of processing, like Bayesian filtering or smoothing, similar to those used in HMMs. In this paper, we deal with Bayesian forecasting. The aim is to show analytically in the simple stationary Gaussian case that the extent results obtained with HMM can be improved. We complete contributions with a theoretical error study and two real examples we deal with. Experiments show that PMMs-based forecasting can significantly improve HMMs-based ones.
Fichier principal
Vignette du fichier
C144.pdf (908.71 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04450999 , version 1 (11-02-2024)

Identifiants

Citer

Marc Escudier, Ikram Abdelkefi, Clément Fernandes, Wojciech Pieczynski. Forecasting with pairwise gaussian Markov models. 8th International Conference on Mathematics and Computers in Sciences and Industry Athens (CMCSI 23), IEEE, Oct 2023, Athènes, Greece. ⟨10.1109/MCSI60294.2023.00009⟩. ⟨hal-04450999⟩
27 Consultations
21 Téléchargements

Altmetric

Partager

More