On-demand reversible switching of the emission mode of individual semiconductor quantum emitters using plasmonic metasurfaces - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue APL Photonics Année : 2024

On-demand reversible switching of the emission mode of individual semiconductor quantum emitters using plasmonic metasurfaces

Résumé

The field of quantum technology has been rapidly expanding in the past decades, yielding numerous applications, such as quantum information, quantum communication, and quantum cybersecurity. At the core of these applications lies the quantum emitter (QE), a precisely controllable generator of either single photons or photon pairs. Semiconductor QEs, such as perovskite nanocrystals and semiconductor quantum dots, have shown much promise as emitters of pure single photons, with the potential for generating photon pairs when hybridized with plasmonic nanocavities. In this study, we have developed a system in which individual quantum emitters and their ensembles can be traced before, during, and after the interaction with an external plasmonic metasurface in a controllable way. Upon coupling the external plasmonic metasurface to the QE array, the individual QEs switch from the single-photon emission mode to the multiphoton emission mode. Remarkably, this method preserves the chemical structure and composition of the QEs, allowing them to revert to their initial state after decoupling from the plasmonic metasurface. This significantly expands the potential applications of semiconductor QEs in quantum technologies.
Fichier principal
Vignette du fichier
016107_1_5.0170535.pdf (7.13 Mo) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-04450588 , version 1 (10-02-2024)

Licence

Paternité

Identifiants

Citer

Adam Olejniczak, Zuzanna Lawera, Mario Zapata-Herrera, Andrey Chuvilin, Pavel Samokhvalov, et al.. On-demand reversible switching of the emission mode of individual semiconductor quantum emitters using plasmonic metasurfaces. APL Photonics, 2024, 9 (1), pp.016107. ⟨10.1063/5.0170535⟩. ⟨hal-04450588⟩

Collections

CNRS URCA LRN
6 Consultations
3 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More