New preconditioners for the Laplace and Helmholtz integral equations on open curves: analytical framework and numerical results - Archive ouverte HAL
Article Dans Une Revue Numerische Mathematik Année : 2021

New preconditioners for the Laplace and Helmholtz integral equations on open curves: analytical framework and numerical results

Résumé

Helmholtz wave scattering by open screens in 2D can be formulated as first-kind integral equations which lead to ill-conditioned linear systems after discretization. We introduce two new preconditioners in the form of square-roots of on-curve differential operators both for the Dirichlet and Neumann boundary conditions on the screen. They generalize the so-called “analytical” preconditioners available for Lipschitz scatterers. We introduce a functional setting adapted to the singularity of the problem and enabling the analysis of those preconditioners. The efficiency of the method is demonstrated on several numerical examples.
Fichier principal
Vignette du fichier
1905.13602v1.pdf (2.3 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04450564 , version 1 (10-02-2024)

Identifiants

Citer

François Alouges, Martin Averseng. New preconditioners for the Laplace and Helmholtz integral equations on open curves: analytical framework and numerical results. Numerische Mathematik, 2021, 148 (2), pp.255-292. ⟨10.1007/s00211-021-01189-5⟩. ⟨hal-04450564⟩
114 Consultations
39 Téléchargements

Altmetric

Partager

More