Remarks on variable Lebesgue spaces and fractional Navier-Stokes equations - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2024

Remarks on variable Lebesgue spaces and fractional Navier-Stokes equations

Résumé

In this work we study the 3D Navier-Stokes equations, under the action of an external force and with the fractional Laplacian operator $(-\Delta)^{\alpha}$ in the diffusion term, from the point of view of variable Lebesgue spaces. Based on decay estimates of the fractional heat kernel we prove the existence and uniqueness of mild solutions on this functional setting. Thus, in a first theorem we obtain an unique local-in-time solution in the space $L^{p(\cdot)} \left( [0,T], L^{q} (\R^3) \right)$. As a bi-product, in a second theorem we prove the existence of an unique global-in-time solution in the mixed-space $\mathcal{L}^{p(\cdot)}_{ \frac{3}{2\alpha -1} } (\mathbb{R}^3,L^\infty([0,T[))$.
Fichier principal
Vignette du fichier
FracNSarxivV1.pdf (360.78 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04447573 , version 1 (08-02-2024)
hal-04447573 , version 2 (10-07-2024)

Identifiants

Citer

Gastón Vergara-Hermosilla. Remarks on variable Lebesgue spaces and fractional Navier-Stokes equations. 2024. ⟨hal-04447573v1⟩
54 Consultations
109 Téléchargements

Altmetric

Partager

More