Hydride-ion-conducting K2NiF4-type Ba–Li oxyhydride solid electrolyte - Archive ouverte HAL
Article Dans Une Revue Nature Materials Année : 2022

Hydride-ion-conducting K2NiF4-type Ba–Li oxyhydride solid electrolyte

Fumitaka Takeiri
Akihiro Watanabe
  • Fonction : Auteur
Kei Okamoto
Bernhard Frick
Asad Ali
  • Fonction : Auteur
Yumiko Imai
  • Fonction : Auteur
Masako Nishikawa
  • Fonction : Auteur
Masao Yonemura
Takashi Saito
  • Fonction : Auteur
Kazutaka Ikeda
Toshiya Otomo
Takashi Kamiyama
Ryoji Kanno
  • Fonction : Auteur
Genki Kobayashi

Résumé

Abstract This roadmap presents the transformational research ideas proposed by “BATTERY 2030+,” the European large‐scale research initiative for future battery chemistries. A “chemistry‐neutral” roadmap to advance battery research, particularly at low technology readiness levels, is outlined, with a time horizon of more than ten years. The roadmap is centered around six themes: 1) accelerated materials discovery platform, 2) battery interface genome, with the integration of smart functionalities such as 3) sensing and 4) self‐healing processes. Beyond chemistry related aspects also include crosscutting research regarding 5) manufacturability and 6) recyclability. This roadmap should be seen as an enabling complement to the global battery roadmaps which focus on expected ultrahigh battery performance, especially for the future of transport. Batteries are used in many applications and are considered to be one technology necessary to reach the climate goals. Currently the market is dominated by lithium‐ion batteries, which perform well, but despite new generations coming in the near future, they will soon approach their performance limits. Without major breakthroughs, battery performance and production requirements will not be sufficient to enable the building of a climate‐neutral society. Through this “chemistry neutral” approach a generic toolbox transforming the way batteries are developed, designed and manufactured, will be created.
Fichier non déposé

Dates et versions

hal-04447201 , version 1 (08-02-2024)

Identifiants

Citer

Fumitaka Takeiri, Akihiro Watanabe, Kei Okamoto, Dominic Bresser, Sandrine Lyonnard, et al.. Hydride-ion-conducting K2NiF4-type Ba–Li oxyhydride solid electrolyte. Nature Materials, 2022, 21 (3), pp.325-330. ⟨10.1038/s41563-021-01175-0⟩. ⟨hal-04447201⟩
18 Consultations
0 Téléchargements

Altmetric

Partager

More