Infinite families of congruences modulo $2$ for $(\ell, k)$-regular partitions - Archive ouverte HAL
Article Dans Une Revue Hardy-Ramanujan Journal Année : 2024

Infinite families of congruences modulo $2$ for $(\ell, k)$-regular partitions

Résumé

Let $b_{\ell, k}(n)$ denote the number of $(\ell, k)$-regular partition of $n$. Recently, some congruences modulo $2$ for $ (3, 8), (4, 7)$-regular partition and modulo $8$, modulo $9$ and modulo $12$ for $(4, 9)$-regular partition has been studied. In this paper, we use theta function identities and Newman results to prove some infinite families of congruences modulo $2$ for $(2, 7)$, $(5, 8)$, $(4, 11)$-regular partition and modulo $4$ for $(4, 5)$-regular partition.
Fichier principal
Vignette du fichier
46Article05.pdf (285.62 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-04446624 , version 1 (08-02-2024)
hal-04446624 , version 2 (12-02-2024)
hal-04446624 , version 3 (27-02-2024)

Licence

Identifiants

Citer

T Kathiravan, Usha K Sangale, Dipramit Majumdar. Infinite families of congruences modulo $2$ for $(\ell, k)$-regular partitions. Hardy-Ramanujan Journal, 2024, Volume 46 - 2023, 46, pp.51 -- 62. ⟨10.46298/hrj.2024.13034⟩. ⟨hal-04446624v2⟩
52 Consultations
353 Téléchargements

Altmetric

Partager

More