On a general divisor problem related to a certain Dedekind zeta-function over a specific sequence of positive integers - Archive ouverte HAL
Article Dans Une Revue Hardy-Ramanujan Journal Année : 2024

On a general divisor problem related to a certain Dedekind zeta-function over a specific sequence of positive integers

Ayyadurai Sankaranarayanan
  • Fonction : Auteur
  • PersonId : 1257976

Résumé

We investigate the average behavior of coefficients of the Dirichlet series of positive integral power of the Dedekind zeta-function $\zeta_{\mathbb{K}_3}(s)$ of a non-normal cubic extension $\mathbb{K}_3$ of $\mathbb{Q}$ over a certain sequence of positive integers. More precisely, we prove an asymptotic formula with an error term for the sum \[ \sum_{{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2}+a_{5}^{2}+a_{6}^{2}\leq {x}}\atop{(a_{1},a_{2},a_{3},a_{4},a_{5},a_{6})\in\mathbb{Z}^{6}}}a_{k,\mathbb{K}_3} (a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2}+a_{5}^{2}+a_{6}^{2}), \] where $(\zeta_{\mathbb{K}_3}(s))^{k}:=\sum_{n=1}^{\infty}\frac{a_{k,\mathbb{K}_3}(n)}{n^{s}}$.
Fichier principal
Vignette du fichier
46Article03.pdf (389.77 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04443008 , version 1 (07-02-2024)
hal-04443008 , version 2 (01-03-2024)

Licence

Identifiants

Citer

Anubhav Sharma, Ayyadurai Sankaranarayanan. On a general divisor problem related to a certain Dedekind zeta-function over a specific sequence of positive integers. Hardy-Ramanujan Journal, 2024, 46, pp.23 -- 41. ⟨10.46298/hrj.2024.13033⟩. ⟨hal-04443008v1⟩
50 Consultations
267 Téléchargements

Altmetric

Partager

More