Short‐Wave Infrared Sensor by the Photothermal Effect of Colloidal Gold Nanorods - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Small Année : 2018

Short‐Wave Infrared Sensor by the Photothermal Effect of Colloidal Gold Nanorods

Résumé

Abstract Photodetection in the short‐wave infrared (SWIR) spectrum is a challenging task achieved often by costly low bandgap compound semiconductors involving highly toxic elements. In this work, an alternative low‐cost approach is reported for SWIR sensors that rely on the plasmonic‐induced photothermal effect of solution‐processed colloidal gold nanorods (Au NRs). A series of uniform solution‐processed Au NRs of various aspect ratios are prepared exhibiting a strong and well‐defined longitudinal localized surface plasmon resonance (L‐LSPR) maximum from 900 nm to 1.3 µm. A hybrid device structure is fabricated by applying Au NRs on the surface of a thermistor. Under a monochromatic illumination, hybrid Au‐NR/thermistor devices exhibit a clear photoresponse in the form of photoinduced resistance drop in the wavelength window from 1.0 to 1.8 µm. The photoresponsivity of such hybrid devices reaches a maximum value of 4.44 × 10 7 Ω W −1 at λ = 1.4 µm (intensity = 0.28 mW cm −2 ), a wavelength in agreement with the L‐LSPR of the Au NRs applied. Colloidal Au NRs, capable to perform fast conversion between photon absorption and thermal energy, thus open an interesting avenue for alternative low‐cost SWIR photodetection.
Fichier principal
Vignette du fichier
manuscript on nanorods_01.2018 copy.pdf (924.28 Ko) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04439457 , version 1 (05-02-2024)

Identifiants

Citer

Hengyang Xiang, Tingting Niu, Mathilde Schoenauer Sebag, Zhelu Hu, Xiangzhen Xu, et al.. Short‐Wave Infrared Sensor by the Photothermal Effect of Colloidal Gold Nanorods. Small, 2018, 14 (16), pp.1704013. ⟨10.1002/smll.201704013⟩. ⟨hal-04439457⟩
3 Consultations
1 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More