Inverse Consistency by Construction for Multistep Deep Registration - Archive ouverte HAL
Communication Dans Un Congrès Année : 2023

Inverse Consistency by Construction for Multistep Deep Registration

Hastings Greer
  • Fonction : Auteur
Lin Tian
  • Fonction : Auteur
Roland Kwitt
  • Fonction : Auteur
Sylvain Bouix
  • Fonction : Auteur
Raul San Jose Estepar
  • Fonction : Auteur
Richard Rushmore
  • Fonction : Auteur
Marc Niethammer
  • Fonction : Auteur

Résumé

Inverse consistency is a desirable property for image registration. We propose a simple technique to make a neural registration network inverse consistent by construction, as a consequence of its structure, as long as it parameterizes its output transform by a Lie group. We extend this technique to multi-step neural registration by composing many such networks in a way that preserves inverse consistency. This multi-step approach also allows for inverse-consistent coarse to fine registration. We evaluate our technique on synthetic 2-D data and four 3-D medical image registration tasks and obtain excellent registration accuracy while assuring inverse consistency.
Fichier non déposé

Dates et versions

hal-04435861 , version 1 (02-02-2024)

Identifiants

Citer

Hastings Greer, Lin Tian, François-Xavier Vialard, Roland Kwitt, Sylvain Bouix, et al.. Inverse Consistency by Construction for Multistep Deep Registration. MICCAI, 2023, Vancouver, Canada. ⟨10.48550/arXiv.2305.00087⟩. ⟨hal-04435861⟩
16 Consultations
0 Téléchargements

Altmetric

Partager

More