Signature volatility models: pricing and hedging with Fourier - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2024

Signature volatility models: pricing and hedging with Fourier

Résumé

We consider a stochastic volatility model where the dynamics of the volatility are given by a possibly infinite linear combination of the elements of the time extended signature of a Brownian motion. First, we show that the model is remarkably universal, as it includes, but is not limited to, the celebrated Stein-Stein, Bergomi, and Heston models, together with some path-dependent variants. Second, we derive the joint characteristic functional of the log-price and integrated variance provided that some infinitedimensional extended tensor algebra valued Riccati equation admits a solution. This allows us to price and (quadratically) hedge certain European and path-dependent options using Fourier inversion techniques. We highlight the efficiency and accuracy of these Fourier techniques in a comprehensive numerical study.
Fichier principal
Vignette du fichier
Stochastic_Sig_vol_models (5).pdf (9.08 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04435238 , version 1 (02-02-2024)

Identifiants

  • HAL Id : hal-04435238 , version 1

Citer

Eduardo Abi Jaber, Louis-Amand Gérard. Signature volatility models: pricing and hedging with Fourier. 2024. ⟨hal-04435238⟩
32 Consultations
123 Téléchargements

Partager

More