Comparison between 2D and 3D fiber-matrix debonding simulation for inverse identification of interface fracture properties - Archive ouverte HAL Accéder directement au contenu
Pré-Publication, Document De Travail Année : 2024

Comparison between 2D and 3D fiber-matrix debonding simulation for inverse identification of interface fracture properties

Behrad Koohbor
  • Fonction : Auteur
  • PersonId : 1209813
Jérôme Bikard
  • Fonction : Auteur
  • PersonId : 905224

Résumé

Fiber-matrix debonding in single fiber specimen is studied experimentally and numerically based on the coupled criterion for which various 2D and one 3D configurations are used. Debonding initiation and propagation are mainly due to normal opening stresses in a 3D model whereas shear stresses play a minor role contrary to a 2D front model, i.e. in a plane normal to the fiber main axis. The 3D model enables describing the free surface singularity similarly to a 2D side model, i.e. along the fiber main axis. The latter cannot represent the debonding arrest and stable propagation after initiation. Overall, a 2D front model under plane strain assumption provides the best description of debonding initiation loading level compared to the 3D model, yet for a larger debonding opening. Experimental debonding openings are determined using DIC, providing the debonding initiation remote loading and corresponding opening. Tensile strengths and critical energy release rates respectively slightly higher and in the same order of magnitude are identified in 3D, based on the debonding opening, compared to a 2D front model.
Fichier principal
Vignette du fichier
main_preprint.pdf (1.47 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Licence : CC BY - Paternité

Dates et versions

hal-04431332 , version 1 (01-02-2024)

Licence

Paternité

Identifiants

  • HAL Id : hal-04431332 , version 1

Citer

Hugo Girard, Aurélien Doitrand, Behrad Koohbor, Renaud G Rinaldi, Nathalie Godin, et al.. Comparison between 2D and 3D fiber-matrix debonding simulation for inverse identification of interface fracture properties. 2024. ⟨hal-04431332⟩
40 Consultations
19 Téléchargements

Partager

Gmail Facebook X LinkedIn More