Use of Symbolic Dynamic Time Warping in hierarchical clustering of urban fabric evolutions extracted from spatiotemporal topographic databases - Archive ouverte HAL
Article Dans Une Revue AI Communications Année : 2016

Use of Symbolic Dynamic Time Warping in hierarchical clustering of urban fabric evolutions extracted from spatiotemporal topographic databases

Anne Puissant
François Petitjean
  • Fonction : Auteur

Résumé

This article introduces a new methodology dedicated to classify the evolutions of urban blocks extracted from spatio-temporal topographic databases where an urban block is defined as the smallest area that is surrounded by communication network (roads, railways, …). To achieve that, an ascendant hierarchical clustering is applied to sequences of urban block states (i.e., sequences of class labels to which the block belongs to at each date). The principal originality of this approach is to use a distance measure based on DTW (Dynamic Time Warping) which is able to apprehend temporal behaviors (mainly time lags in dates corresponding to a change of state) and which takes into account the semantic proximity between the different kinds of urban blocks. Several experiments have been carried out on areas in the city of Strasbourg (France). First results are relevant and highlight realistic urban dynamics.
Fichier non déposé

Dates et versions

hal-04430561 , version 1 (31-01-2024)

Identifiants

Citer

Pierre Gançarski, Anne Puissant, François Petitjean. Use of Symbolic Dynamic Time Warping in hierarchical clustering of urban fabric evolutions extracted from spatiotemporal topographic databases. AI Communications, 2016, 29 (6), ⟨10.3233/AIC-160717⟩. ⟨hal-04430561⟩
22 Consultations
0 Téléchargements

Altmetric

Partager

More