MyoPS: A benchmark of myocardial pathology segmentation combining three-sequence cardiac magnetic resonance images - Archive ouverte HAL
Article Dans Une Revue Medical Image Analysis Année : 2023

MyoPS: A benchmark of myocardial pathology segmentation combining three-sequence cardiac magnetic resonance images

Lei Li
Fuping Wu
  • Fonction : Auteur
Sihan Wang
Xinzhe Luo
Carlos Martín-Isla
  • Fonction : Auteur
Shuwei Zhai
  • Fonction : Auteur
Jianpeng Zhang
  • Fonction : Auteur
Yanfei Liu
  • Fonction : Auteur
Zhen Zhang
  • Fonction : Auteur
Markus Ankenbrand
Haochuan Jiang
Xiaoran Zhang
Linhong Wang
  • Fonction : Auteur
Tewodros Weldebirhan Arega
Elif Altunok
Zhou Zhao
Feiyan Li
Jun Ma
Xiaoping Yang
  • Fonction : Auteur
Elodie Puybareau
Ilkay Oksuz
Stephanie Bricq
Weisheng Li
Kumaradevan Punithakumar
Sotirios Tsaftaris
Laura Schreiber
Mingjing Yang
Guocai Liu
  • Fonction : Auteur
Yong Xia
  • Fonction : Auteur
Guotai Wang
Sergio Escalera
Xiahai Zhuang

Résumé

Assessment of myocardial viability is essential in diagnosis and treatment management of patients suffering from myocardial infarction, and classification of pathology on myocardium is the key to this assessment. This work defines a new task of medical image analysis, i.e., to perform myocardial pathology segmentation (MyoPS) combining threesequence cardiac magnetic resonance (CMR) images, which was first proposed in the MyoPS challenge, in conjunction with MICCAI 2020. The challenge provided 45 paired and pre-aligned CMR images, allowing algorithms to combine the complementary information from the three CMR sequences for pathology segmentation. In this article, we provide details of the challenge, survey the works from fifteen participants and interpret their methods according to five aspects, i.e., preprocessing, data augmentation, learning strategy, model architecture and post-processing. In addition, we analyze the results with respect to different factors, in order to examine the key obstacles and explore potential of solutions, as well as to provide a benchmark for future research. We conclude that while promising results have been reported, the research is still in the early stage, and more in-depth exploration is needed before a successful application to the clinics. Note that MyoPS data and evaluation tool continue to be publicly available upon registration via its homepage (www.sdspeople.fudan.edu.cn/zhuangxiahai/0/myops20/).

Dates et versions

hal-04429573 , version 1 (31-01-2024)

Identifiants

Citer

Lei Li, Fuping Wu, Sihan Wang, Xinzhe Luo, Carlos Martín-Isla, et al.. MyoPS: A benchmark of myocardial pathology segmentation combining three-sequence cardiac magnetic resonance images. Medical Image Analysis, 2023, 87, pp.102808. ⟨10.1016/j.media.2023.102808⟩. ⟨hal-04429573⟩
19 Consultations
0 Téléchargements

Altmetric

Partager

More