An hybrid cnn-transformer model based on multi-feature extraction and attention fusion mechanism for cerebral emboli classification - Archive ouverte HAL
Communication Dans Un Congrès Année : 2022

An hybrid cnn-transformer model based on multi-feature extraction and attention fusion mechanism for cerebral emboli classification

Résumé

When dealing with signal processing and deep learning for classification, the choice of inputting whether the raw signal or transforming it into a time-frequency representation (TFR) remains an open question. In this work, we propose a novel CNN-Transformer
Fichier principal
Vignette du fichier
Vindas-22_MLHC_An hybrid CNN-Transformer model based on multi-feature.pdf (1000.33 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-04429525 , version 1 (31-01-2024)

Identifiants

  • HAL Id : hal-04429525 , version 1

Citer

Philippe Delachartre, Yamil Vindas, Emmanuel Roux, Blaise Kévin Guépié, Marilys Almar. An hybrid cnn-transformer model based on multi-feature extraction and attention fusion mechanism for cerebral emboli classification. Machine Learning for Healthcare, Aug 2022, Durham, United States. ⟨hal-04429525⟩
72 Consultations
49 Téléchargements

Partager

More