
HAL Id: hal-04429525
https://hal.science/hal-04429525v1

Submitted on 31 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An hybrid cnn-transformer model based on
multi-feature extraction and attention fusion mechanism

for cerebral emboli classification
Philippe Delachartre, Yamil Vindas, Emmanuel Roux, Blaise Kévin Guépié,

Marilys Almar

To cite this version:
Philippe Delachartre, Yamil Vindas, Emmanuel Roux, Blaise Kévin Guépié, Marilys Almar. An
hybrid cnn-transformer model based on multi-feature extraction and attention fusion mechanism for
cerebral emboli classification. Machine Learning for Healthcare, Aug 2022, Durham, United States.
�hal-04429525�

https://hal.science/hal-04429525v1
https://hal.archives-ouvertes.fr


Proceedings of Machine Learning Research 182:1–24, 2022 Machine Learning for Healthcare

An hybrid CNN-Transformer model based on multi-feature
extraction and attention fusion mechanism for cerebral

emboli classification

Yamil Vindas yamil.vindas@creatis.insa-lyon.fr
CREATIS Laboratory
Univ Lyon, INSA-Lyon,
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Abstract

When dealing with signal processing and deep learning for classification, the choice of in-
putting whether the raw signal or transforming it into a time-frequency representation
(TFR) remains an open question. In this work, we propose a novel CNN-Transformer
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model based on multi-feature extraction and learnable representation attention weights
per class to do classification with raw signals and TFRs. First, we start by extracting a
TFR from the raw signal. Then, we train two models to extract intermediate representa-
tions from the raw signals and the TFRs. We use a CNN-Transformer model to process
the raw signal and a 2D CNN for the TFR. Finally, we train a classifier that combines the
outputs of both models (late fusion) using learnable and interpretable attention weights
per class. We evaluate our approach on three medical datasets: a cerebral emboli dataset
(HITS), and two electrocardiogram datasets, PTB and MIT-BIH, for heartbeat categoriza-
tion. The results show that our multi-feature fusion approach improves the classification
performance with respect to the use of a single feature method or other multi-feature fusion
methods. Furthermore, it achieves state-of-the-art results on the HITS and PTB datasets
with a classification accuracy of 93, 4% and 99, 7%, respectively. It also achieves excellent
performance on the MIT-BIH dataset, with an accuracy of 98, 4% and a lighter model than
other state-of-the-art methods. What is more, our fusion method provides interpretable
attention weights per class indicating the importance of each representation for the final
decision of the classifier.

1. Introduction

Signals can be defined as encoded representations of physical phenomena. In the past
decade, a lot of works have focused on image classification using deep learning methods
such as deep neural networks (DNN) and convolutional neural networks (CNN) (Rawat and
Wang, 2017). In comparison, fewer works have focused on signals with a temporal depen-
dence, such as audio signals or sensors signals. Yet, temporal dependency is particularly
interesting in the medical field as different devices such as Transcranial Doppler (TCD) ul-
trasound, electrocardiograms (ECG) or electroencephalogram (EEG), produce signals with
a rich temporal dimension.

These time-dependent signals can be used to detect pathologies such as patent foramen
ovale (TCD) and arrhythmia (ECG). They can be used to detect potential causes of stroke
before it occurs (TCD) by monitoring the cerebral blood flow to detect high intensity
transient signals (HITS), which are potential gaseous or solid particles that can circulate in
the bloodstream (Wallace et al., 2015). Some works have focused on discriminating artifacts
from emboli using signal processing and machine learning techniques (Guepie et al., 2019)
and deep learning techniques (Vindas et al., 2022). However, few works focus on portable
TCD data (Guepie et al., 2019) and in vivo artifact/gaseous/solid classification (Vindas
et al., 2022). This last point is of particular interest as gaseous and solid emboli identification
can be useful for transcatheter aortic valve implantation (TAVI) 1 (Aggarwal et al., 2018).
However, the classification of solid / gaseous emboli has not been thoroughly studied, as in
vivo data acquisition is difficult (Tafsast et al., 2018), and classical signal processing and
machine learning techniques have not been able to achieve satisfactory results (Darbellay
et al., 2004; Markus and Punter, 2005).

Classical signal processing techniques extract spectral and handcrafted features to clas-
sify signals (Purwins et al., 2019). In contrast, deep models automatically extract features
from signals or their time-frequency representations (TFRs). To take advantage of the tem-

1. This procedure generates several gaseous emboli and can generate few solid emboli. It is then important
to be able to detect the solid emboli among the numerous gaseous emboli to help clinicians to prevent
strokes.
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poral context of time-dependent signals, models such as 1D CNNs (Nguyen et al., 2021),
recurrent neural networks (RNNs) (Hori et al., 2018), or convolutional deep belief networks
(Lee et al., 2009) can be used.

One of the main difficulties when manipulating time-dependent signals with deep learn-
ing models is the choice of the optimal representation to use to solve the task. Often,
TFRs are used instead of the raw signal (Natarajan et al., 2020; Gong et al., 2021), al-
though the raw signal can provide valuable and complementary information on the studied
phenomenon (of the Ninth International Cerebral Hemodynamic Symposium, 1995). More-
over, some works propose to combine different features and / or representations (Chen et al.,
2021; Yao et al., 2021), and the optimal way of combining them is a critical issue (Ahmad
et al., 2021). In these works, fusion is done by concatenation or majority vote (at different
levels) using precomputed representations. None of these works directly uses the raw signal
and only Jin et al. (2020) uses attention weights to help interpret the final classification.
However, the weight of each representation in the prediction remains unclear.

Inspired from the above-mentioned motivations, we propose an hybrid CNN-Transformer
model based on multi-feature extraction and late fusion with learnable and interpretable
attention weights. First, we compute the magnitude spectrogram of the raw signal. Then,
we feed the raw signal to an hybrid 1D CNN Transformer model and the spectrogram
to a 2D CNN model. Two sets of classification predictions are extracted: one focusing
on temporal characteristics (from the raw signal) and the other on spectral characteristics
(from the spectrogram). Afterwards, these two sets of classification predictions are combined
using learnable attention weights per modality and per class. It allows us to interpret the
importance of each modality in each class probability predicted by the final model.

Our main contribution can be summarized as follows :

• A novel hybrid CNN Transformer model exploiting both the temporal context thanks
to the raw signal and its spectrogram representation.

• We exploit directly the raw signal thanks to an hybrid 1D CNN Transformer model.

• A late-fusion mechanism based on learnable attention weights which are interpretable.

• State-of-the art results on two medical datasets consisting of two different tasks.

The rest of the paper is structured as follows. In Section 2 we introduce some related
works. In Section 3 we present the proposed model and its late fusion mechanism in detail.
In Section 4 we explain the datasets that we used and how they were pre-processed. In
Sections 5 and 6 we provide the experimental setup, and we discuss the results of the
different experiments, respectively. Finally, in Section 7 we conclude and give the guidelines
to our future work.

Generalizable Insights about Machine Learning in the Context of Healthcare

Several medical devices used for physical examination produce temporal dependent signals
as input (TCD, ECG, EEG, etc.). Deep learning approaches (typically CNNs) are often very
efficient when working on pre-extracted TFR from these signals but their outputs usually
suffer a lack of interpretability. Moreover, few models directly exploit the raw temporal-
dependent signal and/or both representations. In this work, we focus on the use of both
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types of representations (temporal and spectral), as we found that it benefits the model
performance on several medical datasets. Finally, we propose a late fusion mechanism based
on learnable attention weights, making our final model easily interpretable with respect
to each input representation. In summary, our method further pushes the deep model
capabilities to exploit time-dependent medical signals while maintaining the predictions
interpretable.

2. Related Work

2.1. Multimodal learning

Multimodal learning consists in exploiting complementary representations of a phenomenon
to solve a task (Baltrusaitis et al., 2017). In fact, different modalities give complementary
points of view that can help improve the performance of a model (Akbari et al., 2021).
(Baltrusaitis et al., 2017) establish a taxonomy of the different challenges in multimodal
learning. Our work is related to two topics: multimodal representation and multimodal
fusion.

Multimodal representations are of two types: joint and coordinated representations. On
the one hand, to obtain joint representations, some works start by individually extracting
hidden features from each modality, and then they project each representation in a common
space (Agrawal et al., 2017; Mei et al., 2016). (Müller, 2007) used autoencoders (AEs) to
extract features from each modality and fuse the obtained representations with another AE
model. On the other hand, one can coordinate individual representations in order to satisfy
some constraint (instead of creating a joint representation). This can be done by minimiz-
ing the distance between each representation (Kiela and Bottou, 2014), or structuring the
representations through order constraints (Taylor et al., 2012) or correlation (Poria et al.,
2015).

Unlike multimodal representation, multimodal fusion is not limited to combining rep-
resentations from different modalities (Baltrusaitis et al., 2017). Three commonly used
fusion techniques are early, intermediate, and late fusion. Early fusion allows correlating
low-level features from the available modalities by combining the different modalities be-
fore feeding them to the model. (Castellano et al., 2008) combine features extracted from
face, body, and speech data before feeding them through a Bayesian classifier (better than
single-modality models). Intermediate fusion combines each modality representation before
the final decision of the model. (Akbari et al., 2021) used a self-supervised multimodal
Transformer to exploit video, audio, and text information on tasks such as video action
recognition, audio event classification, and zero-shot retrieval. Late fusion takes different
models, each trained with one modality, and combines their outputs. Among the different
late fusion approaches we can cite averaging (Rohrbach et al., 2015), weighting (Ouyang
et al., 2014), voting (Mckeown et al., 2010), max, or learned combination (Gebru et al.,
2018).

In this paper, we focus mainly on joint representations and late fusion of different
representations of a single modality.
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2.2. Learning with multiple features and representations

Inspired from multimodality and its advantages, several works have focused on ways of
combining different representations coming from a single modality.

In computer vision, several papers have tried to combine different features and/or repre-
sentations of a single modality (Zhu and Jiang, 2020; Tiong et al., 2019). For face recognition
(Zhu and Jiang, 2020) used two-dimensional principal component analysis (2DPCA) and
local binary patterns (LBP) to extract and combine global and local features from face
images. Similarly, (Tiong et al., 2019) extracts different image features (histogram of gra-
dients, LBP, and entropy texture), each passed to a dedicated CNN model and followed by
intermediate fusions (concatenation, averaging, and max selection). They feed the obtained
fused features to a DNN and combine the outputs using a late decision fusion layer.

In signal processing, different approaches use TFR or other handcrafted features (Jin
et al., 2020; Kim and Lee, 2019; Chen et al., 2021; Ahmad et al., 2021). (Jin et al.,
2020) did emotion recognition using two successive weighted concatenations of (1) features
extracted by an LSTM model from different Mel frequency cepstral coefficients (MFCC)
and (2) features extracted by a DNN model from behavioral data. (Kim and Lee, 2019)
used a concatenation of three TFRs (spectrogram, mel-spectrogram, and MFCC) with an
LSTM to classify power signals. (Chen et al., 2021) use late feature fusion to classify
ECG heartbeat signals to detect atrial fibrillation. They compute two features (eigenvalues
of the recursive matrix, and coherence spectrum characteristic), that pass through a 1D
CNN before a majority voting to combine the models’ outputs. (Ahmad et al., 2021) did
heartbeat categorization using ECG signals. The authors first extracted three images from
the raw signal: gramian angular field, recurrent plot (RP), and Markov transition field.
They achieve state-of-the-art performances on two heartbeat categorization datasets (PTB
and MIT-BIH) with a multimodal feature fusion (MFF) where each feature is passed to an
AlexNet model and then fused before feeding them to an SVM classifier.

3. Methods

In this paper, we propose a novel classification model using temporal-dependent signals and
TFRs. The model is composed of two encoder modules (one for the raw signal and one for
the TFR) and one classification model with learnable attention weights per modality and
per class. Figure 1 shows an overview of our proposed method with two main branches for
the extraction of specific features and an interpretable fusion layer.

3.1. Hybrid 1D CNN Transformer encoder

Let’s denote the raw signal by R = [R1, ...,RN] ∈ RN×C , where N is the length of the
input signal and C is the number of channels of the signal.

To extract features from the raw signal, we propose to use an hybrid 1D CNN Trans-
former architecture. The architecture that we used is strongly inspired by (Natarajan et al.,
2020) and is resumed in Figure 2. The first blocks correspond to 1D CNN blocks, allowing to
efficiently extract features from the raw signal thanks to overlapping 1D convolution filters.
The obtained features form the embeddings that are fed to the Transformer encoder (TE).
Indeed, one input embedding of the TE is composed of all the channel components ob-
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Figure 1: General pipeline of the proposed late fusion method. The green branch corre-
sponds to the 1D-CNN-Transformer model extracting features from the raw sig-
nal. The blue branch corresponds to the 2D CNN model extracting features from
the TFR. WR and WS are the raw signal and spectrogram attention weights for
classification, respectively. The same subscript convention (S and R) is used for
the normalized attention weights, AR and AS

tained after the CNN blocks. The TE exploits the temporal information of the embeddings
thanks to a sinusoidal positional encoding and learn hidden representations using an atten-
tion mechanism. The obtained representation, denoted HTE, can be combined with hidden
features from other representations of the raw signal, or it can be fed to a specific classifier
to perform the classification. If classification is performed, we denote by OTE ∈ RK×1 the
classification scores, where K is the number of classes that we want to classify, and we feed
the FC layers with a class token extracted from HTE as in (Dosovitskiy et al., 2020).

3.2. 2D CNN model

Let us denote the magnitude spectrogram in logarithmic scale by S = [S1, ...,S2] ∈ RF×M ,
where F is the number of frequency bins and M is the number of time bins.

To extract features from the TFR, we use a conventional 2D CNN architecture (each
spectrogram is processed as an image). A summary of the used architecture can be found
in Figure 3. The model is composed of four convolutional blocks, each block composed
of a 2D convolutional filter, a batch normalization layer, a leaky ReLU activation, and a
pooling layer. The obtained representation, denoted as HTFR, can be combined with a
hidden feature of the raw signal, or it can be fed through one FC layer to do classification.
If classification is done, we denote by OTFR ∈ RK×1 the output classification scores.

3.3. Late fusion module

The first fusion method that we introduce is the late fusion method, which takes the output
of two classification models and combines them using learnable and interpretable atten-
tion weights. Let us denote by WR ∈ RK×1 the attention weight vector associated with
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Figure 2: Hybrid 1D CNN-Transformer architecture

Figure 3: 2D CNN architecture used for classification using as input a time-frequency rep-
resentation.

the raw signal representation HTE. Similarly, let’s denote by WS ∈ RK×1 the attention
weight vector associated with the spectrogram representation HTFR. We compute the final
classification scores OLF (late fusion) as follows:

OLF = WR ⊙OTE + WS ⊙OTFR (1)

where ⊙ represents the Hadamard product.
The weights WR and WS are learned using backpropagation. To obtain more inter-

pretable weights, after the learning process is completed, we transform the weights into
scores by applying a softmax function.
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AS = softmax(WS) (2)

AR = softmax(WR) (3)

The element AR
i represents the importance of the raw signal representation for the

classification score of the class i of the classification model. Similarly, AS
j represents the

importance of the spectrogram representation for the classification score of class j.

3.4. Intermediate fusion modules

In addition to weighted late fusion, we tested three types of intermediate fusion: concate-
nation, sum and weighted attention sum.

First, since HTE and HTFR do not live in spaces of the same dimension, we project
them into spaces of equal dimension (64) using a FC layer for each one. This gives us two
new representations, H̃TE and H̃TFR.

Then, we combine the obtained representation using one of the aforementioned methods.
We denote Hcat the concatenated feature, Hsum the summed feature, and Hatt sum the
weighted sum feature. They are obtained as follows:

Hcat = H̃TFR ⊕ H̃TE (4)

Hsum = H̃TFR + H̃TE (5)

Hatt sum = α× H̃TFR + β × H̃TE (6)

where α, β ∈ R are learnable attention weights that indicate the global importance of
each representation for the final decision of the model.

Finally, the obtained representation is passed through an FC layer of shape 64 ×K to
perform the classification.

4. Data

To train and evaluate our proposed method, we used three medical datasets: a private
Transcranial Doppler (TCD) dataset, called the HITS dataset (Vindas et al., 2022), and
two public electrocardiograms (ECG) datasets from Physionet (Goldberger et al., 2000),
the PTB (Bousseljot et al., 1995) and MIT-BIH (Moody and Mark, 2001) datasets.

4.1. HITS dataset

4.1.1. Data acquisition

TCD recordings were performed on 39 subjects (15 men, 19 women, and 5 unknown; median
age 63, range 21 to 85, computed with the available information) of 11 different centers
using an Atys Medical device (TCD-X Holter or WAKIe) with a 1.5 MHz robotized probe,
allowing recordings between 30 and 180 minutes. Patients came from different care units
(neurovascular and cardiovascular), have different pathologies (stenosis, patent foramen
ovale or none), and were injected or not with different contrast agents (Sonovue and iodine-
containing contrast agent). Additionally, the acquisition conditions were heterogeneous
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as some recordings were acquired during surgical procedures (transcatheter aortic valve
implantation and atrial fibrillation ablation) and some not. What is more, according to the
recommendations to monitor the MCA and to do emboli detection, we have the following
acquisition information:

• Pulse repetition frequency: 4.4-6.2 kHz;

• Transmitted ultrasound frequency: 1.5 MHz;

• Insonation depth: 45 − 55 mm;

• Sample volume: 8 − 10 mm3.

The dataset is composed of 403 artifacts, 569 gaseous emboli, 569 solid emboli, and 4
unknown HITS. Appendix A describes the distribution of HITS per subject. Furthermore,
to train and evaluate the different models, we split the dataset into two subsets, one for
training and one for testing, according to the subjects. In this way, the HITS of a given
subject are either in the training set or in the testing set, but they cannot be in both sets.

4.1.2. Data pre-processing

The spectrograms were computed from the TCD signals using nfft = 128 (length of the
windowed signal after padding with zeros), a noverlap = 8 (size of the overlap), and a Black-
man window2. Then HITS were detected (9 dB threshold), resulting in 1545 extracted HITS
distributed in three classes (artifact, gaseous emboli, and solid emboli), each of duration 250
ms. Moreover, in addition to the spectrogram, to each HITS we also associate a raw time
dependent signal. These signals were normalized using the mean and standard deviation of
the training set. Finally, the spectrograms of all HITS were transformed into images used
to train the different models.

4.2. PTB and MIT-BIH datasets

As the HITS dataset is a private dataset, we also performed experiments using two publicly
available heartbeat categorization datasets: PTB (Bousseljot et al., 1995) and MIT-BIH
(Moody and Mark, 2001) from PhysioNet. Both datasets are composed of ECG lead-II
recordings resampled at a frequency of 125 Hz. The PTB dataset focuses on the iden-
tification of myocardial infarction (two imbalanced classes, normal and abnormal, 14 552
samples) and the MIT-BIH dataset focusing on Arrhythmia classification (five imbalanced
classes, 103 436 samples). We used the standardized version of both datasets presented
in (Kachuee et al., 2018)3. In these versions, the ECG signals were segmented into heart-
beats, denoised, and normalized. We computed the spectrograms from these signals using
nfft = 32, noverlap = 4 and a Blackman window2. Finally, the authors also proposed a

2. The choice of these parameters was motivated by a trade-off between model performance, model complex-
ity, and available training data. Indeed, lower values of nfft reduce the performance of the model while
reducing the number of parameters. Higher values of nfft increase performance (up to some threshold
value) while increasing the number of parameters.

3. We use the public available versions found in https://www.kaggle.com/datasets/shayanfazeli/

heartbeat
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training, validation, and testing splitting which was also used in this paper. Tables 7 and 8
describe the number of samples per class for the PTB and MIT-BIH datasets, respectively.
For more details, the reader can refer to Kachuee et al. (2018) and Appendix B.

5. Experiments

We conduct two main experiments to evaluate the different aspects of our method. The first
experiment evaluates the advantage of using multiple features to enhance the performances
of a classification model. The second experiment compares different intermediate and late
feature fusion methods.

5.1. Experiment 1: Advantage of using multiple features

The objective of this experiment is to compare the performance of the proposed models with
and without the use of different initial representations to show the advantage of multiple
initial representations. For each dataset, we train three models, one 1D CNN Transformer
with class token using only the raw signal, one 2D CNN using only the spectrogram and one
late fusion model with learnable attention weights using both representations (Hybrid). For
this last model, we proceed as follows. We start by learning independently the classification
scores of each representation by a classification task. Then, we freeze the weights of the
trained models, and we learn the attention weights.

For the 1D CNN-Transformer model we used nhead = 8, nlayers = 8, dhid = 64, dmodel =
128, dproj = 10, dropout = 0.1 and nconv = 2 for the HITS dataset and nconv = 4 for the
PTB and MIT-BIH datasets. For the 2D CNN, we used a dropout probability of 0.2 and
an initial number of convolutional filters of 256 for the HITS dataset and 32 for the PTB
and MIT-BIH datasets.

Table 1 presents the training parameters of the different models. All models were trained
using cross-entropy (CE) loss, with class weights to handle the imbalanced classes. Class
weights were calculated using Scikit Learn (Pedregosa et al., 2011) and their approach is
inspired by (King and Zeng, 2001). The 2D CNN and late fusion models were trained
using the Adamax optimizer and the 1D-CNN-Transformer model was trained using Noam
optimization (Vaswani et al., 2017) with β1 = 0.9, β2 = 0.999 and 4000 warm-up steps.

All experiments were repeated 10 times and mean performances were compared using
the Matthews correlation coefficient (MCC), the F1 score and the accuracy measured on
the test set.

The results are shown in Table 2. First, we can see that for the three tested datasets
and for all the metrics, the best performing approach is the one using both representations
with late fusion and learned attention weights per representation and per class, with an in-
crease in up to 4.30% in MCC, 4.27% in F1 score and 2.84% in accuracy. Secondly, for the
HITS and PTB dataset we obtain state-of-the-art performances, outperforming the models
in (Vindas et al., 2022) for the HITS dataset and (Ahmad et al., 2021) for PTB with a
difference of 1.6% in terms of F1 score. Furthermore, our proposed method outperforms
the manual classification performed by clinicians. Thirdly, we can see that globally, us-
ing multiple representations allow reducing the variability of the mean performance of the
model, reducing in the best case by 0.45%. Moreover, for the MIT-BIH dataset, we get
close performance to the multimodal image fusion (MIF) approach (98.4% against 98.6%)
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Table 1: Training parameters for the different models. The hybrid model corresponds to
the late fusion proposed method.

Model Dataset Learning rate Weight Decay Batch Size Epochs

1D-CNN-Transformer
HITS

10−1 10−4 16
100

PTB
150

MIT-BIH

2D CNN
HITS 10−5

10−5
4 40

PTB
10−3 16 30

MIT-BIH

Hybrid
HITS 10−2 10−8

16
15

PTB 10−3 10−2

10
MIT-BIH 3 × 10−4 10−2

of (Ahmad et al., 2021) but we are unable to reach the performance of MFF (it outperforms
our method by 1.3%). However, in section 6 we further discuss the relevance of the accu-
racy metric when dealing with imbalanced classes. Finally, table 4 shows the final attention
weights for each class and each representation. We can see that based on the dataset and
the class, one representation is more important than the other. This will be analyzed in
Section 6.

5.2. Experiment 2: Influence of the fusion layer

The objective of this experiment is to highlight the advantages of late fusion with learnable
attention weights compared to other fusion methods. To do this, we train in an end-to-end
manner three more models per dataset, where the fusion is done at an intermediate state
using equations 4, 5 6. Once the fusion is done, we pass the obtained representation to a
set of two fully connected layers.

For the three new models, we used nhead = 8, nlayers = 8, dhid = 64, dmodel = 128,
dproj = 10, pdropout = 0.1 and nconv = 2, and an initial number of convolutional filters of
64 for the HITS dataset and 32 for PTB and MIT-BIH. The training parameters were the
same for the new models; we used a learning rate of 10−4, a weight decay of 10−4, a number
of epochs of 50, and a batch size of 8 for all the HITS models and for the MIT-BIH with
summed representation, and 16 for the rest of the models. To optimize the models, we used
Noam optimization with β1 = 0.9, β2 = 0.999 and 4000 warm up steps. Additionally, we
applied early stopping by selecting the model at the epoch with the maximum validation
accuracy. All experiments were repeated 10 times and mean performances were compared
using the Matthews correlation coefficient (MCC), the F1 score and the accuracy measured
on the test set.

Results are shown in table 3. First, we can see that, for the three datasets, the late
fusion method with attention weight outperforms the other intermediate fusion approaches,
by a margin larger than 2.74% in terms of MCC except for the HITS dataset where the
intermediate sum model performs similarly to the late fusion method. Second, we can see
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Table 2: Results of experiment 1. The hybrid model corresponds to the late fusion proposed
method.

Dataset Model MCC F1 score Accuracy

HITS

2D CNN (Vindas et al., 2022) 83.53 ± 2.98 85.68 ± 2.31 89.48 ± 2.06
1D-CNN-Transformer 80.29 ± 1.83 85.36 ± 1.09 87.37 ± 1.23

2D CNN 85.03 ± 3.06 86.88 ± 2.38 90.55 ± 2.12
Hybrid 89.33± 2.77 91.15± 1.97 93.39± 1.74

PTB

Manual classification
- 70 ± 7 67 ± 7

(Makimoto et al., 2020)
(Liu et al., 2018) - 96.36 96

(Sharma et al., 2015) - 95.91 96
(Chen et al., 2018) - 95.46 96.18

(Ahamed et al., 2020) - - 97.66
MIF (Ahmad et al., 2021) - 95.96 98.4
MFF (Ahmad et al., 2021) - 98 99.2

1D-CNN-Transformer 97.92 ± 0.28 98.96 ± 0.14 99.16 ± 0.11
2D CNN 93.42 ± 2.27 96.66 ± 1.20 97.32 ± 0.91
Hybrid 99.29± 0.21 99.65± 0.10 99.71± 0.08

MIT-BIH

(Zhao et al., 2017) - - 98.25
(Huang et al., 2019) - - 99

(He et al., 2021) - - 98.3
(Qiao et al., 2020) - - 99.3

(Li et al., 2019) - 97.70 99.5
MIF (Ahmad et al., 2021) - 92.50 98.6
MFF (Ahmad et al., 2021) - 98 99.7

1D-CNN-Transformer 93.17 ± 0.70 89.44 ± 0.99 97.87 ± 0.24
2D CNN 91.26 ± 0.76 86.40 ± 1.39 97.34 ± 0.26
Hybrid 94.63± 0.29 91.28 ± 0.54 98.37 ± 0.09

that, globally, the late fusion method considerably reduces the variability of the performance
of the model (this is particularly true for the PTB and MIT-BIH datasets, where the
variability can be reduced by 0.97%). Thirdly, comparing with the results of experiment
1 (Table 2) we can notice that the three types of intermediate fusion does not improve
the performance with respect to the use of a single representation. Indeed, besides the
intermediate sum model on the HITS dataset, all the other models have similar or even
worse performances than their single-spectrogram counterpart (with an MCC degradation
up to 1.3% in the PTB dataset). Finally, we conclude that the performance of the three
intermediate fusion methods is very close and that none of them competes with the late
fusion approach.
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Table 3: Results of experiment 2. The hybrid model corresponds to the late fusion proposed
method.

Dataset Fusion Type MCC F1 score Accuracy

HITS

Concat. 84.96 ± 2.54 86.37 ± 2.11 90.62 ± 1.65
Sum 89.04 ± 1.98 90.23 ± 1.71 93.16 ± 1.29

Weighted Sum 86.31 ± 2.80 87.73 ± 2.32 91.31 ± 1.92
Hybrid 89.33± 2.77 91.15± 1.97 93.39± 1.74

PTB

Concat. 92.91 ± 2.61 96.42 ± 1.33 97.11 ± 1.05
Sum 92.12 ± 2.33 96.02 ± 1.19 96.78 ± 0.99

Weighted Sum 92.74 ± 2.01 96.35 ± 1.00 97.06 ± 0.81
Hybrid 99.29± 0.21 99.65± 0.10 99.71± 0.08

MIT-BIH

Concat. 91.51 ± 0.79 86.93 ± 1.10 97.42 ± 0.27
Sum 91.89 ± 0.47 87.50 ± 0.87 97.55 ± 0.15

Weighted Sum 91.56 ± 0.72 86.70 ± 1.13 97.44 ± 0.24
Hybrid 94.63± 0.29 91.28± 0.54 98.37± 0.09

6. Discussion

Experiment 1: Advantage of using multiple features The results of experiment 1
confirm the genericity of our method, as well as the interest in using our proposed method
to improve the classification performance of a model in three different medical datasets.
Our proposed method takes advantage of the complementarity of both representations, the
raw signal focusing on the temporal context and the amplitude information, whereas the
spectrogram focuses on the spectral information. Moreover, the results show the genericity
of our method. Indeed, it was tested on three different datasets corresponding to three
different tasks and showed the same behavior and great performances on the three datasets.
This is one of the main advantages of our method, as it proposes to exploit two of the
classical representations used for signal classification, instead of having to choose between
one of them. Furthermore, this experiment also highlights another advantage of our method,
the stability of the final classification. Indeed, besides for the HITS dataset, for the PTB
and MIT-BIH dataset the use of both representations allowed to reduce the variability in
the test MCC, F1 score and accuracy scores. This is particularly interesting in the medical
field, where we need stable models capable of giving similar results independently of the
randomness of the training procedure.

Furthermore, our method was able to achieve state-of-the-art performances on the HITS
and PTB datasets. However, to do a more fair comparison with the method proposed in
(Ahmad et al., 2021), we should compare other metrics such as MCC because we are dealing
with highly imbalanced datasets (especially the PTB and MIT-BIH datasets). Moreover,
our proposed model for the MIT-BIH dataset is smaller than the best performing model of
(Ahmad et al., 2021) by a factor of 8 (9 259 427 against 1 159 840 trainable parameters),
and achieves similar performance than the MIF method, which has around 2.5 times more
parameters than our proposed method. By the same token, we can see that the performance
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on the HITS dataset is smaller than the ones obtained on PTB or MIT-BIH. This can be
explained by two main reasons: the size of the dataset, the available temporal context,
and the complexity of the task. Indeed, the HITS dataset has around 500 samples per
class, whereas the PTB dataset has at least 5000 samples per class, and the MIT-BIH has
800 samples per class (minority class). Moreover, the duration of the PTB and MIT-BIH
samples is around 1.44 s whereas for the HITS dataset it is of around 0.250 s (less than one
cardiac cycle), which is around 5 times smaller. Finally, the emboli classification is more
complex as even for a human expert, identifying some solid emboli from gaseous emboli or
artifacts can be difficult (as the unknown samples of the dataset show it).

Furthermore, our method has three major drawbacks. First, the model is longer to train.
Indeed, instead of training a single model, we need to start by training two independent
models and then train a final classifier using the attention weights. This drawback can
partially be solved by training in parallel the two initial models (the fine-tuning of the
attention weights is relatively fast). Secondly, the method is harder to optimize. Indeed,
we have three models to train, and each model has different hyperparameters that have to
be optimized. Third, the multiple features late fusion model is heavier in terms of memory
than single feature models as we increase the number of parameters. Indeed, the final late
fusion hybrid models has 26 073 416 (HITS), 1 156 732 (PTB), and 1 159 840 (MIT-BIH)
learnable parameters. Moreover, they use 19.87 G mult-adds (HITS) and 0.119 G mult-adds
(PTB and MIT-BIH), the model size is of 302 MB for the HITS model and 7 MB for the
ECG models and the mean inference time is smaller than 1 s (using Intel (R) Xeon (R)
CPU E5-2650L v3 @ 1.80GHz and no GPU). Some solutions such as quantization, pruning,
and Huffman encoding can considerably reduce the size of the models.

Experiment 2: Influence of the fusion layer The results of experiment 2 raise an
important point: fusion does not always increase the performances of the models, and
using a wrong fusion strategy can even reduce their performances. Indeed, in the PTB
and MIT-BIH datasets, intermediate fusion leads to similar or even worse results than
spectrogram-only representations. On the contrary, our fusion approach always increases the
classification performances, outperforming the three other fusion methods by an important
margin (up to 4% in terms of MCC and F1 score and 3% in terms of accuracy). This confirms
that our method is able to exploit better than the other tested methods the complementarity
of both representations thanks to the learned attention weights. The only exception is on
the HITS dataset, since the intermediate sum approach achieves similar results to our
proposed approach. However, in that case, the model is not interpretable with respect
to the importance of each representation for the final decision of the model. Moreover,
our approach allows to considerably reduce the variability on the PTB and the MIT-BIH
datasets. This is not noticeable in the HITS dataset, which can be explained by two reasons.
First, for the HITS dataset, the best performing feature is the spectrogram (contrary to
PTB and MIT-BIH), which has the greater variability. Second, as the attention weights of
table 4 show it, the final decision of the hybrid model is more based on the spectrogram
representation than the raw signal. Therefore, the final variability of the model is more
influenced by the variability of the spectrogram-only model than the one of the raw signal
only model.
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Table 4: Attention weights median values and mean absolute deviations for the late fusion
model on the three used datasets

Dataset Class Spectrogram Raw Signal

HITS
Artifact 0.46 ± 0.29 0.54 ± 0.29

Gaseous emboli 0.65 ± 0.17 0.35 ± 0.17
Solid emboli 0.71 ± 0.15 0.29 ± 0.15

PTB
Normal 0.49 ± 0.12 0.51 ± 0.12

Abnormal 0.18 ± 0.10 0.82 ± 0.10

MIT-BIH

N 0.48 ± 0.01 0.52 ± 0.01
S 0.50 ± 0.01 0.50 ± 0.01
V 0.50 ± 0.01 0.50 ± 0.01
F 0.49 ± 0.02 0.51 ± 0.02
Q 0.50 ± 0.003 0.50 ± 0.003

This last point illustrates the interest of the attention weights for interpretability pur-
poses. Indeed, our method offers interpretable attention weights for each representation and
for each class, as showed in table 4. This can give interesting insights for the use of different
modalities, even for annotation purposes. When we study the annotation weights of the
HITS dataset, we see that for the artifact class both representations are equally important.
However, for the solid emboli and gaseous emboli classes, the spectrogram modality is more
important than the raw signal modality. This is consistent with the manual annotation pro-
cess. Indeed, when an annotator labels HITS data, they start by seeing the spectrogram.
In many cases, the spectrogram is discriminating enough to classify the sample. However,
in some cases, the expert can hesitate and use the raw signal to eliminate doubt. For the
PTB dataset, we can see that the raw signal is more useful to identify abnormal heartbeats
than the spectrogram. However, the results indicate that, in case of doubt, the spectrogram
can be helpful.

Finally, our method has another important advantage over the other presented fusion
approaches: it is easier to optimize. Indeed, we just need to optimize each single feature
model independently, and then fine-tune the attention weights, which is not a difficult task.
For the intermediate fusion methods, we add FC layers which add extra parameters and
hyperparameters, making the model harder to optimize and heavier in terms of memory.
Nevertheless, to limit the negative impact of poorly performing single feature models we
plan to further improve our method with an end-to-end training strategy, for instance via
iterated losses (Tjandra et al., 2020) or direct end-to-end training.

7. Conclusion

In this paper, we proposed a novel CNN-Transformer model based on multi-feature extrac-
tion and learnable representation attention weights per class to perform classification with
raw signals and TFRs. Instead of choosing one fixed initial representation of the signal, our
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method proposed to exploit two complementary representations: the raw signal (temporal
information) and the spectrogram (spectral information). We pass these two representa-
tions to two different models, a 1D CNN Transformer for the raw signal and a 2D CNN for
the spectrogram. Then, we fuse the output of each model using a late fusion mechanism
with learnable and interpretable weights. These weights attribute an importance of each
representation for the final classification score of each class. Extensive experiments in three
different datasets demonstrate the effectiveness of our method, improving the classification
performances up to 3% in terms of classification accuracy and up to 4% in terms of MCC
and F1 score.
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Appendix A. Distribution of HITS per class and per subject.

Table 5: Distribution of the HITS per class and per subject (subjects 0 to 19). The HITS
are classified using three classes: artifacts, solid emboli and gaseous emboli. Some
HITS are classified as unknown, but they are not used to train or evaluate the
classification models. Indeed, in some cases, an expert is not able to annotate a
HITS. This happens particularly when a HITS can be a solid or gaseous emboli,
or when there is doubt between a small intensity solid emboli and an artifact.

Subject ID Artifacts Solid emboli Gaseous embolus Unknown Total

0 15 0 123 1 139

1 1 24 3 0 28

2 0 0 72 0 72

3 46 11 0 0 57

4 0 1 0 0 1

5 0 2 0 0 2

6 48 0 0 0 48

7 0 3 0 0 3

8 0 56 0 0 56

9 54 1 0 0 55

10 0 0 4 0 4

11 0 1 0 0 1

12 0 0 15 0 15

13 0 0 76 0 76

14 0 2 0 0 2

15 46 5 0 0 51

16 0 3 0 0 3

17 4 14 0 0 18

18 0 2 0 0 2

19 0 0 54 0 54
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Table 6: Distribution of the HITS per class and per subject (subjects 20 to 38). The HITS
are classified using three classes: artifacts, solid emboli and gaseous emboli. Some
HITS are classified as unknown, but they are not used to train or evaluate the
classification models. Indeed, in some cases, an expert is not able to annotate a
HITS. This happens particularly when a HITS can be a solid or gaseous emboli,
or when there is doubt between a small intensity solid emboli and an artifact.

Subject ID Artifacts Solid emboli Gaseous embolus Unknown Total

20 0 0 7 0 7

21 0 20 0 0 20

22 1 0 0 0 1

23 0 17 0 0 17

24 0 1 0 0 1

25 0 1 0 0 1

26 0 1 0 0 1

27 0 45 6 0 51

28 48 268 2 0 318

29 0 42 181 3 226

30 0 0 7 0 7

31 0 24 0 0 24

32 4 7 1 0 12

33 48 0 0 0 48

34 34 0 0 0 34

35 0 17 0 0 17

36 15 1 0 0 16

37 0 0 4 0 4

38 39 0 14 0 53

Appendix B. Number of samples per class for the PTB and MIT-BIH
datasets.
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Table 7: Number of samples per class in the PTB dataset.

Class Number of samples

Normal 10506
Abnormal 4046

Table 8: Number of samples per class in the MIT-BIH dataset. Each of the classes regroups
a set of abnormal heartbeats. To have the exact correspondence, see (Ahmad et al.,
2021).

Class Number of samples

N 90 589
S 2 779
V 7 226
F 803
Q 8 039

Appendix C. Interpretability of the model prediction using Integrated
Gradients
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Figure 4: Integrated gradients’ attribution maps of the multi-feature proposed model for
a well classified HITS with respect to the true class (solid embolus). The at-
tribution values were computed using the Python library Captum (Kokhlikyan
et al., 2020). The single feature and multi-feature models agree on the class of
the HITS. Globally, the model focuses on the maxima of the inputs. The model
focuses on the high intensity zones in the spectrogram, with a special focus on
the HITS. Some high intensity zones corresponding to the blood flow around the
HITS disrupt the model for the prediction of the solid embolus class. This can
be explained by the fact that gaseous embolus tend to have an elongated shape,
so this high intensity zones around the HITS can confuse the model in favor of
the gaseous embolus class. If we focus on the signal, we can see that the model
focuses also on the HITS for both channels, but some attention is also given to
the event just after, disrupting it towards the gaseous embolus class.
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Figure 5: Integrated gradients’ attribution maps of the multi-feature proposed model for a
well classified HITS with respect to the true class (solid embolus). The attribu-
tion values were computed using the Python library Captum (Kokhlikyan et al.,
2020). The single feature and multi-feature models agree on the class of the HITS.
Globally, the model focuses on the maxima of the inputs. The model focuses on
the high intensity zones in the spectrogram, with a special focus on the HITS.
Contrary to the example in figure 4, the model focuses mainly in the HITS, with
no blood flow disrupting the prediction. That is why we see a slight increase in
the solid classification outputs of the raw signal model and hybrid model.
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Figure 6: Integrated gradients’ attribution maps of the multi-feature proposed model for
a misclassified HITS with respect to the true class (solid embolus). attribution
values were computed using the Python library Captum (Kokhlikyan et al., 2020).
The single feature and multi-feature models do not agree on the class of the
HITS. The model using only the spectrogram, misclassifies the HITS as a gaseous
embolus, whereas the raw signal model accurately identifies the true class of the
HITS. However, due to the attention weights, the classification of the final hybrid
model is erroneous as the TF representation is more important than the raw
signal representation. Nevertheless, we see that the final classification outputs of
the hybrid model are not as confident as the outputs of the single feature models.
Moreover, if we analyze the attribution maps, we can understand the decision of
the different models. On the one hand, from the spectrogram attribution map, we
can see that, for the prediction of the solid embolus class, the model does not use
the HITS itself (which corresponds to the high red intensity zone in the middle of
the spectrogram). What is more, the high yellow intensity zone under the HITS,
as well as the high red intensity zones at the bottom of the spectrogram, disrupts
its prediction. The former disrupts its prediction towards the gaseous embolus
class as gaseous embolus often have an elongated shape. The latter disrupts the
prediction towards the artifact class as many artifacts are symmetric, and this
zone corresponds to the symmetric part of the HITS. From the other hand, the raw
signal focuses well on the HITS itself, even though the event after it (high yellow
intensity zone under the HITS in the spectrogram) is also used by the model,
specially in the first channel. This is what mainly disrupts the classification of
the signal model towards the gaseous embolus class.
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