Two-sided Matrix Regression - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2023

Two-sided Matrix Regression

Résumé

The two-sided matrix regression model Y = A * XB * + E aims at predicting Y by taking into account both linear links between column features of X, via the unknown matrix B * , and also among the row features of X, via the matrix A *. We propose lowrank predictors in this high-dimensional matrix regression model via rank-penalized and nuclear norm-penalized least squares. Both criteria are non jointly convex; however, we propose explicit predictors based on SVD and show optimal prediction bounds. We give sufficient conditions for consistent rank selector. We also propose a fully data-driven rank-adaptive procedure. Simulation results confirm the good prediction and the rankconsistency results under data-driven explicit choices of the tuning parameters and the scaling parameter of the noise.
Fichier principal
Vignette du fichier
2303.04694.pdf (431.39 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04419650 , version 1 (26-01-2024)

Identifiants

  • HAL Id : hal-04419650 , version 1

Citer

Nayel Bettache, Cristina Butucea. Two-sided Matrix Regression. 2024. ⟨hal-04419650⟩
65 Consultations
45 Téléchargements

Partager

More