Kalman filtering using pairwise Gaussian models - Archive ouverte HAL
Communication Dans Un Congrès Année : 2003

Kalman filtering using pairwise Gaussian models

Résumé

An important problem in signal processing consists in recursively estimating an unobservable process x = {x n } n∈IN from an observed process y = {y n } n∈IN. This is done classically in the framework of Hidden Markov Models (HMM). In the linear Gaussian case, the classical recursive solution is given by the well-known Kalman filter. In this paper, we consider Pairwise Gaussian Models by assuming that the pair (x, y) is Markovian and Gaussian. We show that this model is strictly more general than the HMM, and yet still enables Kalman-like filtering.
Fichier principal
Vignette du fichier
icassp2003-fdk.pdf (65.84 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04415546 , version 1 (24-01-2024)

Identifiants

Citer

W. Pieczynski, François Desbouvries. Kalman filtering using pairwise Gaussian models. International Conference on Acoustics, Speech and Signal Processing (ICASSP'03), IEEE, Apr 2003, Hong Kong, China. pp.VI-57-60, ⟨10.1109/ICASSP.2003.1201617⟩. ⟨hal-04415546⟩
3 Consultations
12 Téléchargements

Altmetric

Partager

More