PARTICLE FILTERING IN PAIRWISE AND TRIPLET MARKOV CHAINS - Archive ouverte HAL
Communication Dans Un Congrès Année : 2003

PARTICLE FILTERING IN PAIRWISE AND TRIPLET MARKOV CHAINS

Résumé

The estimation of an unobservable process x from an observed process y is often performed in the framework of Hidden Markov Models (HMM). In the linear Gaussian case, the classical recursive solution is given by the Kalman filter. On the other hand, particle filters provide approximate solutions in more complex situations. In this paper, we propose two successive generalizations of the classical HMM. We first consider Pairwise Markov Models (PMM) by assuming that the pair (x, y) is Markovian. We show that this model is strictly more general than the HMM, and yet still enables particle filtering. We next consider Triplet Markov Models (TMM) by assuming the Markovianity of a triplet (x, r, y), in which r is some additional auxiliary process. We show that the Triplet model is strictly more general than the Pairwise one, and yet still enables particle filtering.
Fichier principal
Vignette du fichier
nsip2003-wp.pdf (97.8 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04415536 , version 1 (24-01-2024)

Identifiants

  • HAL Id : hal-04415536 , version 1

Citer

François Desbouvries, Wojciech Pieczynski. PARTICLE FILTERING IN PAIRWISE AND TRIPLET MARKOV CHAINS. IEEE - EURASIP Workshop on Nonlinear Signal and Image Processing (NSIP 2003), IEEE & EURASIP, Jun 2003, Grado-Gorizia, Italy. ⟨hal-04415536⟩
9 Consultations
13 Téléchargements

Partager

More