Balanced truncation-rational Krylov methods for model reduction in large scale dynamical systems - Archive ouverte HAL Access content directly
Journal Articles Computational & Applied Mathematics Year : 2018

Balanced truncation-rational Krylov methods for model reduction in large scale dynamical systems

Abstract

In this paper, we consider the balanced truncation method for model reductions in large-scale linear and time-independent dynamical systems with multi-inputs and multi-outputs. The method is based on the solutions of two large coupled Lyapunov matrix equations when the system is stable or on the computation of stabilizing positive and semi-definite solutions of some continuous-time algebraic Riccati equations when the dynamical system is not stable. Using the rational block Arnoldi, we show how to compute approximate solutions to these large Lyapunov or algebraic Riccati equations. The obtained approximate solutions are given in a factored form and used to build the reduced order model. We give some theoretical results and present numerical examples with some benchmark models.
No file

Dates and versions

hal-04413583 , version 1 (23-01-2024)

Identifiers

Cite

O. Abidi, Khalide Jbilou. Balanced truncation-rational Krylov methods for model reduction in large scale dynamical systems. Computational & Applied Mathematics, 2018, 37 (1), pp.525-540. ⟨10.1007/s40314-016-0359-z⟩. ⟨hal-04413583⟩
11 View
0 Download

Altmetric

Share

Gmail Facebook X LinkedIn More