Influence of Redox Couple on the Performance of ZnO Dye Solar Cells and Minimodules with Benzothiadiazole-Based Photosensitizers
Résumé
ZnO-based dye-sensitized solar cells exhibit lower efficiencies than TiO 2-based systems despite advantageous charge transport dynamics and versatility in terms of synthesis methods, which can be primarily ascribed to compatibility issues of ZnO with the dyes and the redox couples originally optimized for TiO 2. We evaluate the performance of solar cells based on ZnO nanomaterial prepared by microwave-assisted solvothermal synthesis, using three fully organic benzothiadiazole-based dyes YKP-88, YKP-137, and MG-207, and alternative electrolyte solutions with the I-/I 3-, Co(bpy) 3 2+/3+ , and Cu(dmp) 2 1+/2+ redox couples. The best cell performance is achieved for the dye-redox couple combination YKP-88 and Co(bpy) 3 2+/3+ , reaching an average efficiency of 4.7% and 5.0% for the best cell, compared to 3.7% and 3.9% for the I-/I 3-couple with the same dye. Electrical impedance spectroscopy highlights the influence of dye and redox couple chemistry on the balance of recombination and regeneration kinetics. Combined with the effects of the interaction of the redox couple with the ZnO surface, these aspects are shown to determine the solar cell performance. Minimodules based on the best systems in both parallel and series configurations reach 1.5% efficiency for an area of 23.8 cm 2 .
Fichier principal
gonzalez-flores-et-al-2022-influence-of-redox-couple-on-the-performance-of-zno-dye-solar-cells-and-minimodules-with.pdf (6.02 Mo)
Télécharger le fichier
Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|---|
Licence |