Fast and Accurate Context-Aware Basic Block Timing Prediction using Transformers - Archive ouverte HAL
Communication Dans Un Congrès Année : 2024

Fast and Accurate Context-Aware Basic Block Timing Prediction using Transformers

Résumé

This paper introduces ORXESTRA, a context-aware execution time prediction model based on Transformers XL, specifically designed to accurately estimate performance in embedded system applications. Unlike traditional machine learning models that often overlook contextual information, resulting in biased predictions for individual isolated basic blocks, ORXESTRA overcomes this limitation by incorporating execution context awareness. By doing so, ORXESTRA effectively accounts for the processor micro-architecture without explicitly modeling micro-architectural elements such as caches, pipelines, and branch predictors. Our evaluations demonstrate ORXESTRA's ability to provide precise timing estimations for different ARM targets (Cortex M4, M7, A53, and A72), surpassing existing machine learningbased approaches in both prediction accuracy and prediction speed.
Fichier principal
Vignette du fichier
ORXESTRA_CC_2024.pdf (676.31 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04406073 , version 1 (19-01-2024)
hal-04406073 , version 2 (18-03-2024)

Licence

Identifiants

Citer

Abderaouf Nassim Amalou, Elisa Fromont, Isabelle Puaut. Fast and Accurate Context-Aware Basic Block Timing Prediction using Transformers. CC 2024 - ACM SIGPLAN 33rd International Conference on Compiler Construction, Gabriel Rodríguez, Mar 2024, Edimbourg, United Kingdom. pp.227-237, ⟨10.1145/3640537.3641572⟩. ⟨hal-04406073v1⟩
176 Consultations
264 Téléchargements

Altmetric

Partager

More