The arctic curve for Aztec rectangles with defects via the Tangent Method - Archive ouverte HAL
Article Dans Une Revue Journal of Statistical Physics Année : 2019

The arctic curve for Aztec rectangles with defects via the Tangent Method

Résumé

The Tangent Method of Colomo and Sportiello is applied to the study of the asymptotics of domino tilings of large Aztec rectangles, with some fixed distribution of defects along a boundary. The associated non-intersecting lattice path configurations are made of Schröder paths whose weights involve two parameters and q keeping track respectively of one particular type of step and of the area below the paths. We predict the arctic curve for an arbitrary distribution of defects, and illustrate our result with a number of examples involving different classes of boundary defects.
Fichier principal
Vignette du fichier
1902.06478v1.pdf (3.61 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-04404664 , version 1 (06-01-2025)

Identifiants

Citer

Philippe Di Francesco, Emmanuel Guitter. The arctic curve for Aztec rectangles with defects via the Tangent Method. Journal of Statistical Physics, 2019, 176 (3), pp.639-678. ⟨10.1007/s10955-019-02315-2⟩. ⟨hal-04404664⟩
10 Consultations
0 Téléchargements

Altmetric

Partager

More