AI Systems Trustworthiness Assessment: State of the Art
Résumé
Model-based System Engineering (MBSE) has been advocated as a promising approach to reduce the complexity of AI-based systems development. However, given the uncertainties and risks associated with Artificial Intelligence (AI), the successful application of MBSE requires the assessment of AI trustworthiness. To deal with this issue, this paper provides a state of the art review of AI trustworthiness assessment in terms of trustworthiness attributes/ characteristics and their corresponding evaluation metrics. Examples of such attributes include data quality, robustness, and explainability. The proposed review is based on academic and industrial literature conducted within the Confiance.ai research program.
Origine | Fichiers produits par l'(les) auteur(s) |
---|