Maximal exponent of the Lorentz cones - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2023

Maximal exponent of the Lorentz cones

Résumé

We show that the maximal exponent (i.e., the minimum number of iterations required for a primitive map to become strictly positive) of the n-dimensional Lorentz cone is equal to n. As a byproduct, we show that the optimal exponent in the quantum Wielandt inequality for qubit channels is equal to 3.

Dates et versions

hal-04398595 , version 1 (16-01-2024)

Licence

Identifiants

Citer

Guillaume Aubrun, Jing Bai. Maximal exponent of the Lorentz cones. 2023. ⟨hal-04398595⟩
37 Consultations
0 Téléchargements

Altmetric

Partager

More