Predicting global distributions of eukaryotic plankton communities from satellite data - Archive ouverte HAL
Article Dans Une Revue ISME Communications Année : 2023

Predicting global distributions of eukaryotic plankton communities from satellite data

Guy Cochrane
Daniele Iudicone
Stefanie Kandels
  • Fonction : Auteur
Eric Karsenti
  • Fonction : Auteur
Fabrice Not
  • Fonction : Auteur
Nicole Poulton
Stéphane Pesant
Christian Sardet
  • Fonction : Auteur
Sabrina Speich
  • Fonction : Auteur
Lars Stemmann
  • Fonction : Auteur
Matthew Sullivan
Shinichi Sunagawa
Ryosuke Nakamura
  • Fonction : Auteur
Lee Karp-Boss
Emmanuel Boss
Colomban de Vargas
Kentaro Tomii
Hiroyuki Ogata

Résumé

Abstract Satellite remote sensing is a powerful tool to monitor the global dynamics of marine plankton. Previous research has focused on developing models to predict the size or taxonomic groups of phytoplankton. Here, we present an approach to identify community types from a global plankton network that includes phytoplankton and heterotrophic protists and to predict their biogeography using global satellite observations. Six plankton community types were identified from a co-occurrence network inferred using a novel rDNA 18 S V4 planetary-scale eukaryotic metabarcoding dataset. Machine learning techniques were then applied to construct a model that predicted these community types from satellite data. The model showed an overall 67% accuracy in the prediction of the community types. The prediction using 17 satellite-derived parameters showed better performance than that using only temperature and/or the concentration of chlorophyll a . The constructed model predicted the global spatiotemporal distribution of community types over 19 years. The predicted distributions exhibited strong seasonal changes in community types in the subarctic–subtropical boundary regions, which were consistent with previous field observations. The model also identified the long-term trends in the distribution of community types, which suggested responses to ocean warming.
Fichier principal
Vignette du fichier
s43705-023-00308-7.pdf (2.7 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Licence

Dates et versions

Licence

Identifiants

Citer

Hiroto Kaneko, Hisashi Endo, Nicolas Henry, Cédric Berney, Frédéric Mahé, et al.. Predicting global distributions of eukaryotic plankton communities from satellite data. ISME Communications, 2023, 3 (1), pp.101. ⟨10.1038/s43705-023-00308-7⟩. ⟨hal-04394784⟩
200 Consultations
79 Téléchargements

Altmetric

Partager

More