Large Language Models as Instructors: A Study on Multilingual Clinical Entity Extraction - Archive ouverte HAL
Communication Dans Un Congrès Année : 2023

Large Language Models as Instructors: A Study on Multilingual Clinical Entity Extraction

Résumé

In clinical and other specialized domains, data are scarce due to their confidential nature. This lack of data is a major problem when finetuning language models. Nevertheless, very large language models (LLMs) are promising for the medical domain but cannot be used directly in healthcare facilities due to data confidentiality issues. We explore an approach of annotating training data with LLMs to train smaller models more adapted to our problem. We show that this method yields promising results for information extraction tasks.
Fichier principal
Vignette du fichier
2023.bionlp-1.15.pdf (840.38 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Licence

Dates et versions

hal-04394012 , version 1 (15-01-2024)

Licence

Identifiants

Citer

Simon Meoni, Theo Ryffel, Eric Villemonte de La Clergerie. Large Language Models as Instructors: A Study on Multilingual Clinical Entity Extraction. The 22nd Workshop on Biomedical Natural Language Processing and BioNLP Shared Tasks, Jul 2023, Toronto, Canada. pp.178-190, ⟨10.18653/v1/2023.bionlp-1.15⟩. ⟨hal-04394012⟩

Collections

INRIA INRIA2
83 Consultations
78 Téléchargements

Altmetric

Partager

More