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Abstract

In clinical and other specialized domains, data
are scarce due to their confidential nature. This
lack of data is a major problem when fine-
tuning language models. Nevertheless, very
large language models (LLMs) are promising
for the medical domain but cannot be used di-
rectly in healthcare facilities due to data con-
fidentiality issues. We explore an approach of
annotating training data with LLMs to train
smaller models more adapted to our problem.
We show that this method yields promising re-
sults for information extraction tasks.

1 Introduction

Clinical notes contain the interactions between the
patient and healthcare staff. Professionals record
their impressions, observations, and various med-
ical procedures performed. Despite the comput-
erization of clinical documents, notes should re-
main fairly expressive and in a free format to save
time for healthcare personnel and allow for the de-
scription of unusual situations (Rosenbloom et al.,
2011). Moreover, a large amount of crucial infor-
mation is exclusively contained in clinical notes.
According to a study by Escudié et al. (2017), ap-
proximately 80% of patient phenotypes (a set of
observable biological and physical characteristics
that can characterize a disease) are present only
in free text. These documents are difficult to use
without advanced methods such as deep learning
in NLP. The use of such methods requires the col-
lection and annotation of a significant amount of
medical data. However, Fries et al. (2022) proposes
the term "dataset debt," highlighting that learning
data in the biomedical field is poorly accessible,
poorly documented, and opaque as to its reusability
in a commercial or a hospital context. According to
the article, only 13% of the 167 analyzed datasets
are accessible and downloadable, 22% use a stan-
dard structured format, and 40% are in the public
domain. In recent years, large language models

(LLMs) have proved their ability to perform a wide
range of tasks with high accuracy in a zero-shot or
a few-shots contexts. This trend holds great poten-
tial for clinical NLP, as preliminary results show
promise for information extraction tasks (Agrawal
et al., 2022). However, the clinical domain presents
unique challenges due to the confidential and lin-
guistically specific nature of its data, which can
make collection and annotation time-consuming
and expensive. Using LLMs for efficient informa-
tion extraction without training data could be at-
tractive, but it raises confidentiality concerns. The
model deployment should be controllable, and the
model’s predictions should evolve to fit a specific
and changing annotation guideline. Most multi-
lingual LLMs are not freely available (Scao et al.,
2022; Ouyang et al., 2022; Thoppilan et al., 2022),
to the best of our knowledge, only BLOOM is open-
source and deployable in a custom infrastructure.
The computing resources to use these models re-
mains challenging for healthcare establishments.

One approach to address these issues is to distil
LLMs into a smaller model via weak supervision.
Weak supervision has recently gained community
attention because it alleviates the annotation task.
This technique refers to annotating datasets using
rule-based, heuristic, dictionary extraction or more
advanced methods and then training the smaller
model on this dataset. In the same way, knowledge
distillation aims to transfer knowledge from a mas-
ter model to a student model. It has often been
used to compress large-scale models to improve
memory footprint and the inference speed (Li et al.,
2021). Moreover, student models trained through
knowledge distillation can be more easily moni-
tored and versioned. Hosting them increases the
healthcare centre’s sovereignty, and they become
more compliant with existing privacy policies, as
input data or predictions don’t leave the building.
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2 Motivation and Contributions

We study the use of LLMs in the knowledge distil-
lation technique via weak supervision in the Multi-
lingual Clinical domain, especially in clinical en-
tity extraction. We extend the Agrawal et al. (2022)
study in the sense that we propose an in-depth study
of the use of InstructGPT-3 to annotate a training
dataset. Our work1 mainly aims to compare the
annotation quality using weak supervision tasks on
a smaller model (Figure 1). Finally, we propose
to combine annotations provided by InstructGPT-3
and the dictionary extraction method.

This takes form in these contributions:

• We show that InstructGPT-3 distillation (Fig-
ure 1 middle) is a competitive technique com-
pared to classic weak-supervision techniques
in a multilingual clinical domain;

• We propose a weak supervision approach
(Figure 1 bottom) that combines annotations
from dictionary extraction and InstructGPT-3,
which outperform the approach with only
InstructGPT-3 annotation.

3 Related Works

Weak Supervision deep learning approach has
achieved remarkable success in several domains be-
yond NLP (Zhang et al., 2022). However, the main
bottleneck is collecting massively annotated data.
To address this issue, weak supervision replaces
ground-truth annotation with automatic annotation
based on heuristic rules, gazetteers or constraints
linguistic rules to address. Some techniques called
distant supervision exploit semantic links from
knowledge bases or ontologies (Lison et al., 2021).
Karamanolakis et al. (2021) proposes an iterative
self-training method to combine classic weak su-
pervision and inference of the learning model to
extract entities not covered by the initial heuristic
rules. In the clinical domain, weak supervision has
already been used for specific use cases (Cusick
et al., 2021; Fries et al., 2021; Wang et al., 2019).

Clinical Language Models In the clinical con-
text, some specific terms are underrepresented or
absent in the general domain. As a result, the
clinical NLP community has pretrained Language
Models (LMs) (Alsentzer et al., 2019; Lee et al.,
2020; Alsentzer et al., 2019) over domain-specific

1codebase: https://github.com/arkhn/bio-nlp2023.

corpora (i.e. MIMIC-III (Johnson et al., 2016),
Pubmed abstracts). These models could be trained
from scratch or from checkpoint to specialize a
domain-agnostic model (Gururangan et al., 2020).

Though, the performance gains are marginal
compared to the general language model. The
structure and the abbreviated text present in clinical
notes hurt performance. Instead of pretraining a
specialized clinical model, machine learning prac-
titioners can fine-tune agnostic-domain LLMs such
as the GPT family of models or T5 on the clini-
cal task. Fine-tuned general-purpose models have
proven effective in clinical question-answering,
protected health information de-identification, and
relation extraction (Lehman et al., 2023). But this
approach requires an important infrastructure and
a regular re-finetuning if the data distribution of
the EHR shifts. Nevertheless, some LLMs have
been trained from scratch over clinical domain-
specific notes such as GatorTron (Yang et al., 2022),
BioGPT (Luo et al., 2022) or ClinicalT5 (Lu et al.,
2022) who achieved promising performance on sev-
eral tasks. Additionally, in-context learning with
agnostic LLMs such as InstructGPT-3 (Ouyang
et al., 2022) where no weight is modified shows
good results (Agrawal et al., 2022; Brown et al.,
2020) and outperforms specialized smaller models
on several clinical tasks.

Prompt-based Method Prompt-based learning
for generative language model treats a downstream
task as a language modelling problem where a lan-
guage model predicts the next tokens of the instruc-
tion given a textual prompt (Sainz et al., 2021).

In this paradigm, instead of fine-tuning a model
to a downstream task ("pre-train, fine-tune and
predict"), we manipulate the behaviour of a pre-
trained LM using an appropriate prompt to give
the desired output ("pre-train, prompt and pre-
dict"). prompt engineering explores the most suit-
able prompt method applied to a LM to solve a task.
This way, an unsupervised pre-trained LM can be
used for many tasks (Liu et al., 2023).

Among these methods, in-context learning is the
most popular method for information extraction,
question-answering or sentiment analysis. In the
clinical domain, some works exist on information
retrieval and question-answering. The prompt con-
tains three components: the examples’ template,
the set of examples and the ordering of prompts,
such as present in Figure 5. The aim is to provide
some training examples in the prompt before the
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Figure 1: The different workflows we experiment with. The last workflow used a combination of InstructGPT-3 and
dictionary annotations; we tested different proportions of these annotations as described in 5.2.

test example. However, the chosen examples and
their ordering and the format could impact perfor-
mance (Zhao et al., 2021); these three components
must be tuned to optimize performance.

In another way, we can cite works around the
chain of thoughts (CoT). This encourages the LLM
to explain its reasoning to get more accurate results,
especially in mathematical and logical reasoning
(Wei et al., 2022; Cobbe et al., 2021). This tech-
nique could be used with reason edited manually in
the prompt or with two separate prompts where the
first involves a reasoning task, then concatenated
with the second prompt involving the main tasks.

Other techniques involve generated knowledge
similar to CoT. Instead of reasoning, the first
prompt generates potentially useful information
associated with the tasks concatenated in the final
prompt (Liu et al., 2022).

4 Method

4.1 Creating Annotations and Knowledge
Distillation via Weak Supervision

Annotation Extraction from LLM Output Our
study is inspired by the method developed in this
paper (Agrawal et al., 2022). Their works bench-
mark how InstructGPT-3 (Ouyang et al., 2022) per-

form clinical NLP tasks in English. They show
that InstructGPT-3 performs well in several clinical
tasks. They introduce 3 new datasets to benchmark
few-shot clinical information extraction to achieve
this. Also, they introduce guided prompt design
to induce easy-to-structure output with resolvers
(or parsers) to convert the output into a structured
prediction easily. Our work differs in the following:

1. Our studies areas are knowledge distillation
via weak supervision and the improvement
of this technique combining annotations from
LLMs and dictionary extraction;

2. our methods are applied in a multilingual con-
text, the initial work was only done in English;

3. we focus on the clinical entities extraction task
based on the E3C dataset guidelines.

In this work, the LLM is used only as a predictor;
we only query the model, no additional fine-tuning
step has been realized, and we can only access
inference parameters such as temperature, top p,
frequency or presence penalty. We set the temper-
ature and top p to 0 to control randomness and
have a deterministic behaviour. So as not to pe-
nalize repetitions, we set the presence penalty and
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frequency penalty to 0. We use an InstructGPT-3
model (text-davinci-003) (Ouyang et al., 2022) to
infer the whole annotations for all our experiments.
We provide the model with an instruction concate-
nated by the example to be predicted (Figure 5).
The output of InstructGPT-3 is a string of charac-
ters that we must structure to align the predicted
clinical entities with the initial text (Figure 2).

The task is to annotate the words (or tokens) of
a sentence x ∈ Σ∗ with a set of labels such that
L = {O,Bclin, Iclin} where O denotes a word in the
text without a label, Bclin the first word of a clini-
cal entity and Iclin the following words according
to the format IOB (Ramshaw and Marcus, 1995).
The goal is to identify the labels O, Bclin, Iclin
and their character offsets in the sentence x. The
task output is defined as ŷ = [y1, y2, . . . , yn] ∈ Y ,
where ŷ is the set of predicted annotations, and
yi = ⟨si, ei, li⟩ such that si is the start offset, ei is
the end offset and li ∈ L of the ith annotation.

As mentioned, a prompt-based method requires
concatenating a template t ∈ Σ∗ with our sentence
x to give our prompt, such as p = concat(t, x). We
produce our output o ∈ Σ∗ from our LLM model Φ
such as o = Φ(p, θh), where θh represents the set
of hyperparameters (temperature, top p, frequence
penalty, presence penalty).

Then, we structure o such as Σ∗ → Y using a
simple string-matching function to produce a set of
labels ŷ where r is our resolver applying the string
matching function: r(o, x) = ŷ.

Knowledge Distillation via Weak Supervi-
sion Finally, the annotations generated via
InstructGPT-3 prediction are used as a training
dataset to fine-tune a smaller language model to
a NER downstream task. For smaller language
models, we limit our study to encoder models as
mentioned in Table 1.

4.2 Prompting

We prime the model with three annotated data
points, each corresponding to a sentence from our
corpus (Table 2). For each language, we try 3
sets of data points. For each of them, we test
the F1-Score performance of InstructGPT-3 on the
test dataset (gold standard), and we select the set
with the best F1-Score to perform prediction on
the unannotated dataset. We insert keywords as-
sociated with the E3C guideline definition of the
clinical entities into prompts. We add guidance to
explicit the response structure to facilitate parsing

the output (Agrawal et al., 2022) (Figure 5.2).

5 Experiments

5.1 Dataset

We use the annotated E3C multilingual dataset
(Magnini et al., 2020) for our experiments, con-
sisting of two annotation types: temporal and clini-
cal entities. The languages supported are English
(en), Basque (eu), Spanish (es), French (fr) and
Italian (it). Clinical entities are identified as pa-
tient disorders which could map to the UMLS meta
thesaurus. The annotators have linked extracted
clinical entities and UMLS concepts. In our ex-
periments, we only extract clinical entities without
mapping UMLS concepts. The E3C dataset is or-
ganized into 3 layers. A layer consists of a subset
of files from each language annotated in a certain
way (manually, semi-automatically) depending on
the layer:

• the first layer (gold standard) consists of the
full manual annotation; we used this layer as
a test set for our experiments;

• The second layer consists of semi-automatic
annotation; we use this layer as a train set
with the initial annotation or the annotation in-
ferred by InstructGPT-3. Moreover, we have
access to two states of this layer; the first is
the layer entirely annotated with dictionary ex-
traction (silver); the second is a subset of this
layer (only 10%) that has been fixed manually
(silver with fixed annotations). The dictio-
nary contains terms from UMLS and terms
extracted from gold standard;

• Finally, the third layer (layer 3) is unanno-
tated, which we don’t use for our experiments.

As mentioned above, the E3C dataset is well-
suited for our weak-supervision studies. But, the
dataset has limited data in its various layers (Table
2). To address this limitation, we divide silver into
five parts using 5-fold cross-validation. For silver
with fixed annotations, we use the entire data as
the training set. Our experiments employ multi-
ple models for each language and relied solely on
xlm-roberta-base in a multilingual context. The
results presented in our work are an aggregation of
the means and standard deviations across models
and folds. However, each experiment result and
model are reported in Appendix 7.
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x = ’The patient had presented a progressive deterioration of the general condition,

a fever and night sweats.’

p = concat(t, x)

o = Φ(p, θh) =’-"fever"

-"night sweats"’

r(o, x) = [

(The, 0, 3, O), (patient, 4, 11, O), . . . ,

(fever, 72, 77, Bclin), (and, 79, 82, O),

(night, 83, 87, Bclin), (sweats, 88, 94, Iclin), . . .

]

Figure 2: our method’s prediction and structuring steps on an example. The t template is illustrated in Figure 5.

Language Models

en emilyalsentzer/Bio_ClinicalBERT (Alsentzer et al., 2019)
roberta-base (Liu et al., 2019)
xlm-roberta-base (Conneau et al., 2019)

es BSC-LT/roberta-base-biomedical-es (Carrino et al., 2022)
dccuchile/bert-base-spanish-wwm-cased (Cã et al., 2020)
xlm-roberta-base

eu ixa-ehu/berteus-base-cased (Agerri et al., 2020)
xlm-roberta-base

fr Dr-BERT/DrBERT-7GB (Labrak et al., 2023)
camembert-base (Martin et al., 2019)
xlm-roberta-base

it dbmdz/bert-base-italian-cased (Schweter, 2020)
xlm-roberta-base

Table 1: The models used for each language during our
experiments. We mention in this table the name of the
model in the huggingface model repository

5.2 Experimental Setup

We conduct experiments on the clinical entity ex-
traction tasks. For each language, we use models
mentioned in Table 1 as a student model for the
knowledge distillation step. We conduct our ex-
periments we use five different dataset settings.
For Monolingual Setting (SMonoSilver), Gold
Setting (SMonoGold), SMonoSilver ∩ SMonoGold

(SMonoGold ∩ MonoSilver) and each language, we
use the silver of the corresponding language. For
the Multilingual Setting (SMultiSilver) and each
language, we concatenate the silver of the whole
languages in E3C to constitute the train set. Fi-
nally, for all settings and each language, we test
our method on the gold standard of the language
we experiment with.

• Monolingual Setting (SMonoSilver): We use
a ratio r to control the mix of annotations,
with r representing the proportion of annota-
tions from dictionary extraction and (1 − r)
representing the proportion of annotations

from InstructGPT-3. If r = 1, the models are
trained using only InstructGPT-3 annotations,
while if r = 0, the models are trained exclu-
sively with dictionary extraction annotations.
We test and compare the performance of the
trained models using various ratio values of r.

• Gold Setting (SMonoGold): we use silver
with fixed annotations as the train set, and we
compare encoder models trained on manually
corrected annotation (r = 0) and an encoder
model trained on the same subset but using
InstructGPT-3 prediction annotations (r = 1);

• SMonoGold ∩ MonoSilver: we use silver as the
train set. Still, we replace weak-supervision
annotations with the annotation fixed in silver
with fixed annotations. So, a small part of
the InstructGPT-3 prediction annotations and
the dictionary extraction annotations has been
replaced by manual annotations;

• Multilingual Setting (SMultiSilver): we use
the same setting as SMonoSilver except we are
on multilingual training context. For this set-
ting, our trained models are multilingual lan-
guage models. We use xlm-roberta-base.

5.3 Results

InstructGPT-3 Prediction Analysis For silver,
we observe that InstructGPT-3 extracts more enti-
ties than original extraction (Table 2). This trend
is reduced in English and Spanish even if we ob-
served a more important quantity of Iclin in tokens
annotated by InstructGPT-3 for all languages. For
silver with fixed annotations, the quantity of to-
kens annotated by both methods (InstructGPT-3 vs
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Language Layer Tokens Bclin Iclin Bclin + Iclin
Gold GPT Gold GPT Gold GPT

en l2 58520 2134 1438 1036 1595 3170 3033
lval 6646 254 149 137 130 391 279

es l2 57065 2625 2245 1298 1857 3923 4102
lval 6291 329 236 269 159 598 395

eu l2 18365 482 800 63 482 545 1282
lval 4819 327 207 245 143 572 350

fr l2 59998 2013 2402 840 2239 2853 4641
lval 6452 267 295 244 225 511 520

it l2 60248 1643 2099 793 1628 2436 3727
lval 6538 224 223 147 199 371 422

Table 2: The number of annotated tokens for each an-
notation type for the silver (l2) and silver with fixed
annotations (lval). The notation Gold corresponds to
the original extraction, and the notation GPT correspond
to the InstructGPT-3 annotation.

Language F1-Score
InstructGPT-3 distilled models

en 0.71 0.66 ± 0.01
es 0.74 0.70 ± 0.02
eu 0.60 0.61 ± 0.04
fr 0.74 0.75 ± 0.01
it 0.63 0.75 ± 0.01

Table 3: The mean F1-score of the models for each lan-
guage in E3C using gold standard as evaluation set.
We evaluate the direct output of InstructGPT-3 and the
aggregated mean score of each model for each language
listed in Table 1 using SMonoSilver with r ∈ {0, 1}
and InstructGPT-3 annotation as a train set.

manually corrected annotation) is relatively equiva-
lent.

Knowledge Distillation Evaluation We com-
pare the distilled model and InstructGPT-3 on the
gold standard (Table 3). Distillation is beneficial
in terms of performance for Basque, French and
Italian. Moreover, we denote a remarkable gap
between InstructGPT-3 (0.63) and distilled mod-
els (0.75) in Italian. Spanish and English have re-
versed trends: InstructGPT-3 performs better than
distilled models. This echoed the exception we ob-
served in the InstructGPT-3 Prediction Analysis
paragraph.

SMonoSilver with r ∈ {0, 1} If we compare the
global F1-Score (Table 4), the distilled models
(r = 1) perform better than the weak-supervised
models (r = 0) trained. In detail, distilled models
display a better recall and recognizes multi-word
clinical terms more easily. Still, this flexibility, bal-
anced by the too-biased detection of false positive

en es eu fr it
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Figure 3: A graph with the mean F1-score of the models
on the y-axis and the different language on the x-axis
for the SMonoSilver with r ∈ {0, 1}. The orange bar
represents the distilled models F1-Scores whereas the
dotted blue bars represent the weak-supervised models
F1-score.

terms, lowered the precision score. In comparing
distilled models versus weak-supervised models
(Figure 3), we note a noticeable performance gain
of almost 0.1 in Basque, followed by French and
Italian. In English, the F1-score of both models
is relatively equivalent. For Spanish, the weak-
supervised models outperformed the distilled mod-
els and still has our highest F1-Score.

SMonoGold The amount of annotated tokens in
silver with fixed annotations is relatively small
compared to silver (Figure 2). This hurts the re-
sult (Table 4) of the distilled models (0.61 with
silver with fixed annotations vs 0.70 with silver)
in contrast to the weak-supervised models, where
performance has gained 0.03 (0.70 with silver with
fixed annotations vs 0.67 with silver). The weak-
supervised models performance is relatively bet-
ter than the distilled models. Moreover, the dis-
tilled models recall performance seems to be af-
fected by the small amount of data and annotated
tokens (0.68 for SMonoSilver with r = 1 vs 0.58
for SMonoGold with r = 1).

SMonoGold ∩ MonoSilver The results (Table 4)
show better performance for both models when
we mix a slight quantity of manually annotated
data with silver. The distilled models outperforms
the weak-supervised models with a gain of 0.03.
In both cases, the F1-Score gain is due to the im-
provement of the recall: we obtain a gain of 0.05
compared to the SMonoSilver with r ∈ {0, 1}.
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SMonoSilver For all languages except Basque, we
obtained better results when we mixed weak super-
vised and InstructGPT-3 annotations. The local
optimum for these languages is reached when r ∈
[0.4, 0.6] (Figure 4). The Basque doesn’t follow
this trend; using a dataset with only InstructGPT-3
annotations (where r = 1) gives the best result
among all tried r values.

SMultiSilver Using a multilingual train set and
LM (xlm-roberta-base) gives inferior results
compared to SMonoSilver (Table 5). Though we
obtain better results in Italian than the SMonoSilver

(+0.01); the optimum is set to r = 0.8. In the other
case, mixing annotations described in 5.2 don’t af-
fect results as observed in SMonoSilver due to the
noise generated by the multilingual nature of the
train set.

5.4 Discussion

Our experiments using the E3C dataset demon-
strate the potential of knowledge distillation and
weak supervision in the context of clinical entity
extraction tasks. We observe that distilled models
outperform classic weak supervision approaches,
especially in Basque, French, and Italian languages.
However, we notice some interesting trends in En-
glish and Spanish that require further analysis.

The trend is reversed in Spanish, with the weak-
supervised models performing better than the dis-
tilled ones. For all the models we trained for Span-
ish (Table 1), we don’t distinguish any difference
between monolingual, agnostic domain, multilin-
gual, or medical monolingual language models.
One possible explanation for these trends is the
difference in data sources. While the corpora for
other languages come from the Pan African Journal
or Pubmed, the Spanish corpus is sourced from the
SPACCC corpus. The clinical entity distribution
and semantic differences from this source could
bias our results. Moreover, additional data cleaning
has been applied to layer 1, such as sentence and
punctuation removal and capitalization, which may
reinforce this difference between the languages.

In English, the difference in performance be-
tween distilled and weak-supervised models is rel-
atively small compared to other languages. This
can be attributed to the superior quality of annota-
tions in the silver. The English lexicon resource
(supplied by the UMLS meta-thesaurus and terms
extracted in gold standard) employed for mapping
clinical entities in the text is likely more exten-
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Figure 4: The line plots with the mean F1-score of the
models on the y-axis and the ratio of dictionary anno-
tations and annotations via InstructGPT-3 on the x-axis
for SMonoSilver and SMultiSilver as described in 5.2.
A ratio of r = 0 indicates the presence of only dictio-
nary annotations, while a ratio of r = 1 corresponds to
exclusively InstructGPT-3 annotations. Each coloured
line represents the result for a language

sive and precise than those accessible for other
languages with fewer linguistic resources.

Furthermore, SMonoSilver reveals that com-
bining annotations from Dictionary extraction
and InstructGPT-3 marginally outperforms when
r = 1. Integrating various annotation sources
shows promise and typically enhances model gen-
eralization. However, in the case of Basque,
SMonoSilver does not yield the best results when
we have only InstructGPT-3 annotations (r = 1).
As we raise the ratio r, we observe a gradual im-
provement in F1-score. It can be explained by the
original annotations from silver in Basque was cre-
ated using a low-resource lexicon. As shown in
Table 2, only 63 Iclin tokens were initially anno-
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Setting F1-Score Precision Recall
r = 1 r = 0 r = 1 r = 0 r = 1 r = 0

SMonoSilver 0.70 ± 0.06 0.67 ± 0.09 0.73 ± 0.03 0.78 ± 0.09 0.68 ± 0.09 0.63 ± 0.10
SMonoGold 0.61 ± 0.09 0.70 ± 0.06 0.72 ± 0.03 0.75 ± 0.04 0.58 ± 0.10 0.69 ± 0.05

SMonoGold ∩ MonoSilver 0.73 ± 0.03 0.71 ± 0.08 0.74 ± 0.04 0.78 ± 0.05 0.73 ± 0.06 0.68 ± 0.08

Table 4: The F1-score, Precision and the Recall for the different settings in section 5.2. r = 1 corresponds to the
distilled models and the r = 0 corresponds to the weak-supervised models.

Setting F1-Score Precision Recall
rmax rmax rmax

SMonoSilver 0.72 ± 0.06 0.75 ± 0.02 0.71 ± 0.08
SMultiSilver 0.69 ± 0.06 0.79 ± 0.03 0.65 ± 0.08

Table 5: The F1-score, Precision, and Recall for
SMonoSilver and SMultiSilver as described in Sec-
tion 5.2. The scores are aggregated across languages,
with rmax representing the optimal value of r.

tated, in contrast to 482 tokens for InstructGPT-3
annotations.

In the case of SMultiSilver, we did not observe
any significant results. The performance of Span-
ish, Italian, and French languages either experi-
enced a slight improvement or was unaffected by
the multilingual composition of the training dataset.
However, this setting negatively impacted English
and Basque. The predominance of Romance lan-
guages in the dataset could be the cause.

Moreover, Basque is a distinct and isolated lan-
guage with unique linguistic structures. The other
languages in the training dataset are linguistically
distant, which may introduce noise during the train-
ing process and consequently affect the perfor-
mance of the Basque model.

Another interesting observation is that
InstructGPT-3 extracts almost twice as many
entities as the original extraction method (Figure
2). This trend is more pronounced in silver, while
the number of annotated tokens in silver with fixed
annotations is almost equivalent between both
annotation sets, likely due to human validation.
This difference could be explained by the fact
that InstructGPT-3 has no access to the guidelines,
and the prompt mentioned to extract "disorders,"
"disease," or "symptoms" is less restrictive than
the E3C guideline annotation.

Our results highlight the potential of knowledge
distillation and weak supervision for clinical entity
extraction, particularly for languages with more
limited resources. Though, data sources, annota-
tion quality, and the comprehensiveness of linguis-

tic resources influence the performance of these
methods. Further research is needed to address
these challenges and improve our methods.

6 Limitation

One limitation of our study is the small size of the
test set, which may impact the generalizability of
our results. Additionally, we restrained our work
on clinical entity extraction; in future work, we
would investigate more in several tasks using the
E3C temporality layer to cover a task of Name
Entity Recognition and Relation Extraction tasks.

Finally, the E3C guidelines have been designed
for clinical entity extraction and entity-linking via
UMLS entities. After the first step of manual anno-
tation, some spans of the entities have been mod-
ified to fit as close as possible to the semantical
concepts found in UMLS (Magnini et al., 2020).
For instance, clinical entities could be split into sep-
arate disorder concepts, and the extent of a disorder
candidate could be reduced to fit with a concept.
These biases could induce additional difficulties in
finding the correct span for a given model.

7 Conclusion

Our results demonstrate that the knowledge distilla-
tion with InstructGPT-3 outperforms the dictionary
supervision for extracting clinical entities.

We show that mixing these approaches to build a
training dataset brings diversity to the annotations
and improves the distilled model performance.

Weak-supervision approach with LLMs is rel-
atively promising for creating a training dataset.
This reduces the annotation cost and, at the same
time, focuses the manual annotation on the test set,
which is one of the most prominent parts of high-
stake domains like healthcare. Furthermore, the
interest of the approach is also to fine-tune a small
to medium-sized LM that may be used locally with-
out the leak of confidential medical data and with
a reduced energy cost. In a low-resource context,
such as Basque, LLMs offer a competitive alter-
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native to the classic weak supervision technique,
which requires linguistic resources.

Furthermore, we aim to investigate advanced
techniques to combine various annotations by in-
corporating confidence measures from the different
predictions. Using other LLMs predictions and en-
semble, the difference could be pertinent because
the annotation diversity can improve a model’s per-
formance, as we observed on SMonoSilver (Figure
4). Additionally, we will consider utilising per-
formance metrics (such as recall and precision) to
decide which type of annotations (begin or inner-
tokens) to retain for each prediction method.

Finally, adapting CoT or generated knowledge
(Wei et al., 2022; Cobbe et al., 2021) for clinical
entity extraction could improve LLM’s precision.
To our knowledge, none of these techniques has
been adapted to clinical information retrieval. We
could craft a prompt with different annotation steps
through different examples. At each annotation
step, we describe a precise instruction and its result.
For example, incorporating the three steps of the
E3C annotation into the prompt could help encour-
age the LLM to better adhere to the guideline.
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Appendix

Input: The evolution was marked two months later,

by the appearance of angiomatous plaques on the

right forearm, [...]

extract the exact match of disorders, diseases or

symptoms mentioned in the text or

return None if there is no clinical entity:

- "angiomatous plaques"

- "lymphedema"

- "lesions"

Input: At the same time, the patient had presented

a progressive alteration of the general condition,

a fever and night sweats

extract the exact match of disorders, diseases

or symptoms mentioned in the text or

return None if there is no clinical entity:

- "progressive alteration of the general condition"

- "fever"

- "night sweats"

Input: The sedimentation rate was 35mm at the

first hour, C-reactive protein was negative

and ferritin level was 900µg/l

(i.e., 4 times the normal value).

extract the exact match of disorders, diseases

or symptoms mentioned in the text or

return None if there is no clinical entity:

- "None"

Input: The interview revealed no history

of any pathological events, in particular

skin rash, gastrointestinal disorders, jaundice,

respiratory infection or recent vaccination.

extract the exact match of disorders, diseases

or symptoms mentioned in the text or

return None if there is no clinical entity:

- "

Figure 5: An example of the prompt used in our ex-
periment. The formatted examples are shown in blue ,
while the formatted examples to predict are shown in
orange . The instructions are shown in purple , and the

guidance, as used in Agrawal et al. (2022), is shown in
green . For all languages, instruction is still in English,

but the formatted examples are in the source language.
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Language Model F1-Score
r = 1 r = 0

en emilyalsentzer/Bio_ClinicalBERT 0.66 ± 0.01 0.68 ± 0.01
roberta-base 0.67 ± 0.01 0.65 ± 0.01

xlm-roberta-base 0.66 ± 0.01 0.65 ± 0.01

es BSC-LT/roberta-base-biomedical-es 0.72 ± 0.01 0.78 ± 0.01
dccuchile/bert-base-spanish-wwm-cased 0.69 ± 0.01 0.76 ± 0.01

xlm-roberta-base 0.68 ± 0.02 0.73 ± 0.01

eu ixa-ehu/berteus-base-cased 0.60 ± 0.03 0.54 ± 0.03
xlm-roberta-base 0.61 ± 0.04 0.47 ± 0.01

fr Dr-BERT/DrBERT-7GB 0.74 ± 0.01 0.70 ± 0.01
camembert-base 0.75 ± 0.01 0.69 ± 0.04
xlm-roberta-base 0.74 ± 0.01 0.72 ± 0.02

it dbmdz/bert-base-italian-cased 0.74 ± 0.01 0.73 ± 0.00
xlm-roberta-base 0.75 ± 0.01 0.72 ± 0.02

Table 6: This table reports the F1-Scores for the different models and annotation ratios r ∈ {0, 1} for SMonoSilver

described in Section 5.2.

Language Model F1-Score
r = 1 r = 0

en emilyalsentzer/Bio_ClinicalBERT 0.60 0.65
roberta-base 0.61 0.70

xlm-roberta-base 0.43 0.69

es BSC-LT/roberta-base-biomedical-es 0.71 0.78
dccuchile/bert-base-spanish-wwm-cased 0.70 0.77

xlm-roberta-base 0.62 0.73

eu ixa-ehu/berteus-base-cased 0.54 0.72
xlm-roberta-base 0.51 0.68

fr Dr-BERT/DrBERT-7GB 0.73 0.75
camembert-base 0.71 0.60
xlm-roberta-base 0.68 0.68

it dbmdz/bert-base-italian-cased 0.63 0.70
xlm-roberta-base 0.55 0.57

Table 7: This table reports the F1-Scores for the different models and annotation ratios r ∈ {0, 1} for SMonoGold

described in Section 5.2.
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Language Model F1-Score
r = 1 r = 0

en emilyalsentzer/Bio_ClinicalBERT 0.70 ± 0.01 0.69 ± 0.01
roberta-base 0.70 ± 0.01 0.68 ± 0.01

xlm-roberta-base 0.67 ± 0.01 0.67 ± 0.01

es BSC-LT/roberta-base-biomedical-es 0.77 ± 0.02 0.80 ± 0.01
dccuchile/bert-base-spanish-wwm-cased 0.76 ± 0.01 0.78 ± 0.00

xlm-roberta-base 0.76 ± 0.01 0.76 ± 0.01

eu ixa-ehu/berteus-base-cased 0.70 ± 0.03 0.72 ± 0.02
xlm-roberta-base 0.70 ± 0.01 0.57 ± 0.09

fr Dr-BERT/DrBERT-7GB 0.75 ± 0.01 0.73 ± 0.02
camembert-base 0.76 ± 0.01 0.74 ± 0.01
xlm-roberta-base 0.74 ± 0.01 0.69 ± 0.04

it dbmdz/bert-base-italian-cased 0.75 ± 0.01 0.75 ± 0.01
xlm-roberta-base 0.74 ± 0.00 0.74 ± 0.01

Table 8: This table reports F1-Scores for different models and annotation ratios r ∈ {0, 1} for
SMonoGold ∩ MonoSilver described in Section 5.2.

Language Model rmax r = 1 rmax r = 0
F1-Score Precision Recall F1-Score Precision Recall F1-Score Precision Recall

en xlm-roberta-base 0.5 0.65 ± 0.01 0.72 ± 0.01 0.63 ± 0.01 0.71 ± 0.01 0.71 ± 0.03 0.71 ± 0.02 0.66 ± 0.01 0.68 ± 0.03 0.64 ± 0.02
roberta-base 0.4 0.65 ± 0.01 0.72 ± 0.01 0.62 ± 0.02 0.71 ± 0.01 0.72 ± 0.01 0.71 ± 0.03 0.67 ± 0.01 0.70 ± 0.01 0.65 ± 0.01

emilyalsentzer/Bio_ClinicalBERT 0.6 0.68 ± 0.01 0.73 ± 0.01 0.66 ± 0.02 0.72 ± 0.01 0.75 ± 0.02 0.70 ± 0.02 0.66 ± 0.01 0.71 ± 0.02 0.63 ± 0.01

es xlm-roberta-base 0.4 0.73 ± 0.01 0.80 ± 0.01 0.70 ± 0.01 0.76 ± 0.01 0.77 ± 0.02 0.76 ± 0.02 0.68 ± 0.02 0.74 ± 0.02 0.65 ± 0.04
dccuchile/bert-base-spanish-wwm-cased 0.4 0.76 ± 0.01 0.81 ± 0.01 0.73 ± 0.02 0.78 ± 0.00 0.80 ± 0.02 0.76 ± 0.02 0.69 ± 0.01 0.72 ± 0.02 0.66 ± 0.03
BSC-LT/roberta-base-biomedical-es 0.4 0.78 ± 0.01 0.82 ± 0.01 0.75 ± 0.01 0.79 ± 0.01 0.80 ± 0.04 0.79 ± 0.03 0.72 ± 0.01 0.75 ± 0.02 0.69 ± 0.02

eu xlm-roberta-base 1 0.47 ± 0.01 0.63 ± 0.14 0.44 ± 0.01 - - - 0.61 ± 0.04 0.73 ± 0.02 0.56 ± 0.05
ixa-ehu/berteus-base-cased 1 0.54 ± 0.03 0.91 ± 0.01 0.49 ± 0.02 - - - 0.60 ± 0.03 0.74 ± 0.02 0.54 ± 0.03

fr xlm-roberta-base 0.4 0.72 ± 0.02 0.80 ± 0.02 0.67 ± 0.03 0.75 ± 0.01 0.75 ± 0.02 0.75 ± 0.02 0.74 ± 0.01 0.74 ± 0.02 0.74 ± 0.02
camembert-base 0.6 0.69 ± 0.04 0.83 ± 0.00 0.64 ± 0.04 0.76 ± 0.00 0.79 ± 0.01 0.74 ± 0.01 0.75 ± 0.01 0.74 ± 0.01 0.76 ± 0.01

Dr-BERT/DrBERT-7GB 0.6 0.70 ± 0.01 0.84 ± 0.00 0.64 ± 0.01 0.76 ± 0.01 0.76 ± 0.01 0.77 ± 0.01 0.74 ± 0.01 0.77 ± 0.04 0.73 ± 0.04

it xlm-roberta-base 0.6 0.72 ± 0.02 0.78 ± 0.02 0.70 ± 0.04 0.75 ± 0.02 0.76 ± 0.02 0.76 ± 0.02 0.75 ± 0.01 0.75 ± 0.02 0.75 ± 0.02
dbmdz/bert-base-italian-cased 0.8 0.73 ± 0.00 0.76 ± 0.02 0.73 ± 0.02 0.75 ± 0.00 0.72 ± 0.02 0.81 ± 0.02 0.74 ± 0.01 0.70 ± 0.02 0.81 ± 0.02

Table 9: This table presents F1-Scores, Precision, and Recall for different models at annotation ratios r ∈ {0, 1}
and at the optimal r value, rmax for SMonoSilver, as described in Section 5.2.

Language Model rmax r = 1 rmax r = 0
F1-Score Precision Recall F1-Score Precision Recall F1-Score Precision Recall

en xlm-roberta-base 1 0.64 ± 0.01 0.74 ± 0.01 0.60 ± 0.01 - - - 0.66 ± 0.03 0.75 ± 0.03 0.62 ± 0.05
es xlm-roberta-base 0.6 0.71 ± 0.01 0.82 ± 0.01 0.65 ± 0.02 0.74 ± 0.01 0.83 ± 0.02 0.69 ± 0.02 0.71 ± 0.01 0.80 ± 0.03 0.65 ± 0.02
eu xlm-roberta-base 0.5 0.57 ± 0.02 0.86 ± 0.02 0.51 ± 0.02 0.59 ± 0.02 0.79 ± 0.02 0.54 ± 0.02 0.57 ± 0.01 0.76 ± 0.04 0.51 ± 0.01
fr xlm-roberta-base 0.6 0.69 ± 0.02 0.83 ± 0.01 0.62 ± 0.02 0.71 ± 0.01 0.81 ± 0.02 0.65 ± 0.02 0.70 ± 0.02 0.80 ± 0.02 0.64 ± 0.03
it xlm-roberta-base 0.8 0.73 ± 0.01 0.78 ± 0.01 0.71 ± 0.01 0.76 ± 0.01 0.76 ± 0.01 0.77 ± 0.02 0.76 ± 0.01 0.75 ± 0.03 0.78 ± 0.02

Table 10: This table presents F1-Scores, Precision, and Recall for different models at annotation ratios r ∈ {0, 1}
and at the optimal r value, rmax for SMultiSilver, as described in Section 5.2.
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