Rethinking Temporal Dependencies in Multiple Time Series: A Use Case in Financial Data - Archive ouverte HAL
Communication Dans Un Congrès Année : 2023

Rethinking Temporal Dependencies in Multiple Time Series: A Use Case in Financial Data

Jean-Marc Patenaude
  • Fonction : Auteur
  • PersonId : 1335396
Shengrui Wang
  • Fonction : Auteur
  • PersonId : 1124316

Résumé

These days, complex systems yield copious time series data, necessitating understanding co-generation, often assessed through pairwise comparisons. However, this method lacks scalability and temporal dynamics handling. In this paper, we advocate using a temporal graph to capture contiguous effects among multiple time series efficiently. Our two-step approach identifies patterns and temporal influences with low execution time, showcasing its potential in financial system incident prediction.
Fichier principal
Vignette du fichier
ICDM_2023 (1).pdf (1.17 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04392991 , version 1 (14-01-2024)

Licence

Identifiants

  • HAL Id : hal-04392991 , version 1

Citer

Patrick Asante Owusu, Etienne Tajeuna, Jean-Marc Patenaude, Armelle Brun, Shengrui Wang. Rethinking Temporal Dependencies in Multiple Time Series: A Use Case in Financial Data. IEEE International Conference on Data Mining, Dec 2023, Shanghai (CH), China. ⟨hal-04392991⟩
38 Consultations
172 Téléchargements

Partager

More