Discovery of an Insect Neuroactive Helix Ring Peptide from Ant Venom - Archive ouverte HAL
Article Dans Une Revue Toxins Année : 2023

Discovery of an Insect Neuroactive Helix Ring Peptide from Ant Venom

Alain Dejean
Isabelle Rahioui
  • Fonction : Auteur
  • PersonId : 748777
  • IdHAL : irahioui
Karine Loth
Françoise Paquet

Résumé

Ants are among the most abundant terrestrial invertebrate predators on Earth. To overwhelm their prey, they employ several remarkable behavioral, physiological, and biochemical innovations, including an effective paralytic venom. Ant venoms are thus cocktails of toxins finely tuned to disrupt the physiological systems of insect prey. They have received little attention yet hold great promise for the discovery of novel insecticidal molecules. To identify insect-neurotoxins from ant venoms, we screened the paralytic activity on blowflies of nine synthetic peptides previously characterized in the venom of Tetramorium bicarinatum. We selected peptide U11, a 34-amino acid peptide, for further insecticidal, structural, and pharmacological experiments. Insecticidal assays revealed that U11 is one of the most paralytic peptides ever reported from ant venoms against blowflies and is also capable of paralyzing honeybees. An NMR spectroscopy of U11 uncovered a unique scaffold, featuring a compact triangular ring helix structure stabilized by a single disulfide bond. Pharmacological assays using Drosophila S2 cells demonstrated that U11 is not cytotoxic, but suggest that it may modulate potassium conductance, which structural data seem to corroborate and will be confirmed in a future extended pharmacological investigation. The results described in this paper demonstrate that ant venom is a promising reservoir for the discovery of neuroactive insecticidal peptides.
Fichier principal
Vignette du fichier
Barassé & Jouvensal, Toxins 2023, 15, 600.pdf (1.08 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-04390519 , version 1 (12-01-2024)

Identifiants

Citer

Valentine Barassé, Laurence Jouvensal, Guillaume Boy, Arnaud Billet, Steven Ascoët, et al.. Discovery of an Insect Neuroactive Helix Ring Peptide from Ant Venom. Toxins, 2023, 15 (10), pp.600. ⟨10.3390/toxins15100600⟩. ⟨hal-04390519⟩
170 Consultations
52 Téléchargements

Altmetric

Partager

More