Revisiting the Coco Panoptic Metric to Enable Visual and Qualitative Analysis of Historical Map Instance Segmentation - Archive ouverte HAL
Communication Dans Un Congrès Année : 2021

Revisiting the Coco Panoptic Metric to Enable Visual and Qualitative Analysis of Historical Map Instance Segmentation

Résumé

Segmentation is an important task. It is so important that there exist tens of metrics trying to score and rank segmentation systems. It is so important that each topic has its own metric because their problem is too specific. Does it? What are the fundamental differences with the ZoneMap metric used for page segmentation, the COCO Panoptic metric used in computer vision and metrics used to rank hierarchical segmentations? In this paper, while assessing segmentation accuracy for historical maps, we explain, compare and demystify some the most used segmentation evaluation protocols. In particular, we focus on an alternative view of the COCO Panoptic metric as a classification evaluation; we show its soundness and propose extensions with more "shape-oriented" metrics. Beyond a quantitative metric, this paper aims also at providing qualitative measures through precision-recall maps that enable visualizing the success and the failures of a segmentation method.
Fichier principal
Vignette du fichier
chazalon.21.icdar.1.pdf (1.59 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04390438 , version 1 (12-01-2024)

Identifiants

Citer

Joseph Chazalon, Edwin Carlinet. Revisiting the Coco Panoptic Metric to Enable Visual and Qualitative Analysis of Historical Map Instance Segmentation. International Conference on Document Analysis and Recognition, Jul 2021, Lausanne (CH), France. pp.367-382, ⟨10.1007/978-3-030-86337-1_25⟩. ⟨hal-04390438⟩

Collections

ANR
8 Consultations
42 Téléchargements

Altmetric

Partager

More