Identifying relevant descriptors for tweet sets - Archive ouverte HAL Access content directly
Conference Papers Year : 2023

Identifying relevant descriptors for tweet sets


Twitter is a media where information flows in vast volumes. Even considering a particular topic, the collected tweets come in a wide variety of forms. This makes the data description problem complex. In this paper, given a set of tweets, we consider the problem of producing a set of relevant descriptors to characterize the tweets. Messages and words are considered in an embedding space learned with Doc2Vec, a model well suited for short documents. We propose to leverage this model to identify text units that may span over several words. We then propose to measure the impact of the units on their document representation through ablation. The most important units are selected as descriptors. Experiments have been conducted in the context of a tweet cluster description problem on two datasets. One is about the storm Alex, which struck France in October 2020, and the other about the beginning of the Russia-Ukraine war in February 2022. The results show the interest of our method compared to existing work.
No file

Dates and versions

hal-04387910 , version 1 (11-01-2024)



Olivier Gracianne, Anaïs Halftermeyer, Thi-Bich-Hanh Dao. Identifying relevant descriptors for tweet sets. 2023 IEEE 35th International Conference on Tools with Artificial Intelligence (ICTAI), Nov 2023, Atlanta (GA), United States. pp.263-268, ⟨10.1109/ICTAI59109.2023.00046⟩. ⟨hal-04387910⟩
8 View
0 Download



Gmail Facebook X LinkedIn More