On Behavior of Solutions for Nonlinear Klein–Gordon Wave Type Models with a Logarithmic Nonlinearity and Multiple Time-Varying Delays - Archive ouverte HAL
Article Dans Une Revue Axioms Année : 2024

On Behavior of Solutions for Nonlinear Klein–Gordon Wave Type Models with a Logarithmic Nonlinearity and Multiple Time-Varying Delays

Résumé

In this paper, we study the existence and exponential stability of solutions to a class of nonlinear delay Klein–Gordon wave type models on a bounded domain. Such models include multiple time-varying delays, frictional damping, and nonlinear logarithmic source terms. After showing the local existence result of the solutions using Faedo–Galerkin’s method and logarithmic Sobolev inequality, the global existence is analyzed. Then, under some appropriate conditions, energy decay estimates and exponential stability results of the global solutions are investigated.
Fichier principal
Vignette du fichier
axioms-13-00029-v2.pdf (325.39 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-04387140 , version 1 (10-04-2024)

Identifiants

Citer

Aziz Belmiloudi. On Behavior of Solutions for Nonlinear Klein–Gordon Wave Type Models with a Logarithmic Nonlinearity and Multiple Time-Varying Delays. Axioms, 2024, 13 (1), pp.29. ⟨10.3390/axioms13010029⟩. ⟨hal-04387140⟩
246 Consultations
26 Téléchargements

Altmetric

Partager

More