An $L^{3/2}$ $SL_2$ Kakeya maximal inequality - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2024

An $L^{3/2}$ $SL_2$ Kakeya maximal inequality

Résumé

We prove a special case of the Kakeya maximal function conjecture in $\mathbb{R}^3$ , with $C_{\epsilon}\delta^{-\epsilon}$ loss, when the centre lines of the tubes are $SL_2$ lines and the tubes satisfy a 2-dimensional ball condition (implied by the Wolff axioms). We show that the exponent $p = 3/2$ is sharp and that some loss (such as $C_{\epsilon}\delta^{-\epsilon}$) is necessary, even in the $SL_2$ case where the $\delta$-tubes have $\delta$-separated directions and the cardinality of the tube family is maximal ($∼ \delta^{-2}$). The $SL_2$ Kakeya maximal inequality is deduced from an $L^{3/2}$ inequality for restricted families of projections onto planes. A related $L^{3/2-\epsilon}$ inequality is also derived for restricted projections onto lines, and an application is given to generic intersections of sets in $\mathbb{R}^3$ with "light rays" and "light planes".
Fichier principal
Vignette du fichier
new version.pdf (649.9 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04386684 , version 1 (10-01-2024)

Identifiants

  • HAL Id : hal-04386684 , version 1

Citer

John Green, Terence L. J. Harris, Yumeng Ou. An $L^{3/2}$ $SL_2$ Kakeya maximal inequality. 2024. ⟨hal-04386684⟩
385 Consultations
333 Téléchargements

Partager

More