Efficient Bayesian estimation and use of cut posterior in semiparametric hidden Markov models - Archive ouverte HAL
Article Dans Une Revue Electronic Journal of Statistics Année : 2023

Efficient Bayesian estimation and use of cut posterior in semiparametric hidden Markov models

Résumé

We consider the problem of estimation in Hidden Markov models with finite state space and nonparametric emission distributions. Efficient estimators for the transition matrix are exhibited, and a semiparametric Bernstein-von Mises result is deduced. Following from this, we propose a modular approach using the cut posterior to jointly estimate the transition matrix and the emission densities. We derive a general theorem on contraction rates for this approach. We then show how this result may be applied to obtain a contraction rate result for the emission densities in our setting; a key intermediate step is an inversion inequality relating $L^1$ distance between the marginal densities to $L^1$ distance between the emissions. Finally, a contraction result for the smoothing probabilities is shown, which avoids the common approach of sample splitting. Simulations are provided which demonstrate both the theory and the ease of its implementation.
Fichier principal
Vignette du fichier
23-EJS2201.pdf (1.28 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Licence

Dates et versions

hal-04386010 , version 1 (11-09-2024)

Licence

Identifiants

Citer

Daniel Moss, Judith Rousseau. Efficient Bayesian estimation and use of cut posterior in semiparametric hidden Markov models. Electronic Journal of Statistics , 2023, 18 (1), pp.1815-1886. ⟨10.1214/23-EJS2201⟩. ⟨hal-04386010⟩
56 Consultations
17 Téléchargements

Altmetric

Partager

More