A pure Stokes approach for coupling fluid flow with porous media flow - Archive ouverte HAL
Article Dans Une Revue Finite Elements in Analysis and Design Année : 2024

A pure Stokes approach for coupling fluid flow with porous media flow

Modesar Shakoor
Chung Hae Park

Résumé

Most numerical approaches for coupling fluid flow with porous media flow rely either on Stokes equations in the fluid part of the domain and Darcy's law in the porous part, or on Brinkman's equation. In both cases, difficulties arise at the boundary between the two parts because the equations used in the porous part are not of Stokes type. In this paper, an alternative to Darcy's law is proposed for modeling flows in porous media. This alternative relies on equations of Stokes type where the permeability tensor is replaced by force and stress derivative tensors. Numerical procedures are presented to compute these tensors from simulations at pore scale. Simulations in domains containing both fluid and porous parts are finally conducted simply assuming continuity of velocity and pressure and hence without imposing any condition at the boundary between the two parts. Results show that the proposed method is accurate and hence a promising alternative to Darcy's law for problems involving both fluid and porous parts.
Fichier principal
Vignette du fichier
manuscript.pdf (5.39 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence

Dates et versions

hal-04385363 , version 1 (10-01-2024)

Licence

Identifiants

Citer

Modesar Shakoor, Chung Hae Park. A pure Stokes approach for coupling fluid flow with porous media flow. Finite Elements in Analysis and Design, 2024, 231, pp.104106. ⟨10.1016/j.finel.2023.104106⟩. ⟨hal-04385363⟩
32 Consultations
64 Téléchargements

Altmetric

Partager

More