Counter-Examples in First-Order Optimization: A Constructive Approach
Résumé
While many approaches were developed for obtaining worst-case complexity bounds for first-order optimization methods in the last years, there remain theoretical gaps in cases where no such bound can be found. In such cases, it is often unclear whether no such bound exists (e.g., because the algorithm might fail to systematically converge) or simply if the current techniques do not allow finding them. In this work, we propose an approach to automate the search for cyclic trajectories generated
by first-order methods. This provides a constructive approach to show that no appropriate complexity bound exists, thereby complementing approaches providing sufficient conditions for convergence. Using this tool, we provide ranges of parameters for which the famous Polyak heavy-ball, Nesterov accelerated gradient, inexact gradient descent, and three-operator splitting algorithms fail to systematically converge, and show that it nicely complements existing tools searching for Lyapunov functions.