Fractional extreme distributions
Abstract
We consider three classes of linear differential equations on distribution functions, with a fractional order α ∈ [0,1]. The integer case α = 1 corresponds to the three classical extreme families. In general, we show that there is a unique distribution function solving these equations, whose underlying random variable is expressed in terms of an exponential random variable and an integral transform of an independent α-stable subordinator. From the analytical viewpoint, this distribution is in one-to-one correspondence with a Kilbas-Saigo function for the Weibull and Fréchet cases, and with a Le Roy function for the Gumbel case
Origin | Publication funded by an institution |
---|